The integration of distributed energy resources (DERs), e.g., electric vehicles (EVs) and renewable distributed generation (DG), in the electrical distribution system (EDS) brings advantages to society, but also introduces technical challenges (e.g., overloading and voltage issues). A DER aggregator, which has agreements with DERs to manage their consumption/generation, could collaborate with the EDS operator to mitigate those technical challenges. Previous approaches have mainly focused on the aggregator’s strategy to manage demand, aiming at the maximization of profits. Therefore, methods to support the aggregator’s strategy need to be extended to facilitate the integration of renewable DG, leading to an enhanced coordination of DERs. This paper proposes a linear programming model for the aggregator’s coordination strategy to maximize its profit through the management of DERs and the participation in the day-ahead reserve market. The model uses EV charging control to provide up/down reserve and reduces its cost taking advantage of DG. The proposed mathematical model represents the daily EDS operation (hourly resolution) to enforce voltage and current magnitude constraints. A case study carried out in an unbalanced 34-bus EDS with 660 EVs, demonstrates that the application of the proposed method enhances the DER aggregator’s strategy, leading to better outcomes in both profits and EDS operation.
In the present day, it is crucial for individuals and companies to reduce their carbon footprints in a society more self-conscious about climate change and other environmental issues. In this sense, public and private institutions are investing in photovoltaic (PV) systems to produce clean energy for self-consumption. Nevertheless, an essential part of this energy is wasted due to lower consumption during non-business periods. This work proposes a novel framework that uses solar-generated energy surplus to charge external electric vehicles (EVs), creating new business opportunities. Furthermore, this paper introduces a novel marketplace platform based on blockchain technology to allow energy trading between institutions and EV owners. Since the energy provided to charge the EV comes from distributed PV generation, the energy’s selling price can be more attractive than the one offered by the retailers—meaning economic gains for the institutions and savings for the users. A case study was carried out to evaluate the feasibility of the proposed solution and its economic advantages. Given the assumptions considered in the study, 3213 EVs could be fully charged by one institution in one year, resulting in over EUR 45,000 in yearly profits. Further, the economic analysis depicts a payback of approximately two years, a net present value of EUR 33,485, and an internal rate of return of 61%. These results indicate that implementing the proposed framework could enable synergy between institutions and EV owners, providing clean and affordable energy to charge vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.