Activation of transcription factor NF-κB is a hallmark of infection with the gastric pathogen Helicobacter pylori, associated with inflammation and carcinogenesis. Genome-wide RNAi screening revealed numerous host factors involved in H. pylori-, but not IL-1β- and TNF-α-dependent NF-κB regulation. Pathway analysis including CRISPR/Cas9-knockout and recombinant protein technology, immunofluorescence microscopy, immunoblotting, mass spectrometry, and mutant H. pylori strains identified the H. pylori metabolite D-glycero-β-D-manno-heptose 1,7-bisphosphate (βHBP) as a cagPAI type IV secretion system (T4SS)-dependent effector of NF-κB activation in infected cells. Upon pathogen-host cell contact, TIFA forms large complexes (TIFAsomes) including interacting host factors, such as TRAF2. NF-κB activation, TIFA phosphorylation, and TIFAsome formation depend on a functional ALPK1 kinase, highlighting the ALPK1-TIFA axis as a core innate immune pathway. ALPK1-TIFA-mediated NF-κB activation was independent of CagA protein translocation, indicating that CagA translocation and HBP delivery to host cells are distinct features of the pathogen's T4SS.
Neisseria gonorrhoeae expresses numerous surface proteins that mediate bacterial adherence and invasion during infection. Gonococci expressing serotype A of the major outer membrane porin PorB (PorB(IA)) are frequently isolated from patients with severe disseminating infections. PorB(IA) triggers efficient adherence and invasion under low phosphate conditions mimicking systemic bloodstream infections. Here, we identify the human heat shock glycoprotein Gp96 and the scavenger receptor SREC as PorB(IA)-specific receptors. Gonococci expressing PorB(IA), but not those expressing PorB serotype B instead, bind to purified native or recombinant Gp96. Depletion of Gp96 from host cells prevented adherence but significantly triggered gonococcal invasion. Furthermore, such invasion was blocked by chemical inhibitors of scavenger receptors, and we identified SREC as the scavenger receptor involved in PorB(IA)-dependent invasion. Thus, we establish Gp96 as an anti-invasion factor and SRECs as receptors mediating host cell entry of highly invasive disseminating gonococci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.