Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of α-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of β-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration.
Mucopolysaccharidosis type I (MPS I), a rare autosomal recessive disease, is caused by a deficiency of the lysosomal enzyme alfa-L-iduronidase. Impaired enzyme activity promotes glycosaminoglycans accumulation in several tissues and organs, leading to complex multisystemic complications. Several studies using animal models indicated different intracellular pathways involving MPS I physiopathology; however, the exact mechanisms underlying this syndrome are still not understood. Previous results from our group showed alterations in ionic homeostasis and cell viability of splenocytes and macrophages in IduaÀ/À mice. In the present study, we found altered intracellular ionic homeostasis in a different cell type (fibroblasts) from the same murine model. IduaÀ/À fibroblasts from 3-month-old mice presented higher cytoplasmatic and endoplasmic reticulum Ca 2+ concentration, lower levels of mitochondrial Ca 2+ and mitochondrial membrane potential and higher cytoplasmatic pH when compared to Idua+/+ animals. Also, IduaÀ/À fibroblasts were more resistant to the apoptotic induction with staurosporine, indicating a possible resistance to apoptotic induction in those cells. In addition, despite the intracellular ionic imbalance, no significant alterations were found in apoptosis and autophagy in IduaÀ/À fibroblasts, which implies that the ionic alterations did not activate those pathways. The investigation of mechanisms underlying the cellular physiopathology of lysosomal diseases is crucial for a better understanding about the progression of these diseases. Since splenocytes, macrophages, and fibroblasts have different embryonic origins and distinct structural and functional features, potentially altered signaling pathways found in a cell-specific manner in an alfa-L-iduronidasedeficient environment provide additional understanding of the clinical multisystemic presentation of this disease and provide new basis for improved therapeutic approaches.
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by a deficiency of the lysosomal hydrolase, α-L-iduronidase (IDUA). IDUA degrades heparan and dermatan sulfates, two types of glycosaminoglycan (GAG), important signalling and structural molecules of the extracellular matrix. Because many cell types store GAGs, MPS I has been investigated in human and animal models. Enzyme replacement therapy is available for MPS I patients and has improved their life expectancy, allowing them to achieve reproductive age. The aim of this study was to evaluate epididymal and sperm morphology and function in a murine model of MPS I. We used C57BL Idua+/+ and Idua−/− adult male mice (6 months old) to investigate epididymal morphology, sperm ultrastructure, GAG characterisation and mating competence. Epithelial GAG storage, especially in the cauda epididymidis, was seen in Idua−/− mice. Regardless of the morphologic change and GAG storage found in the cauda epididymis, sperm morphology and motility were normal, similar to wild types. In the interstitium, vacuolated cells were found in addition to deposits of GAGs. Mating was not impaired in Idua−/− males and litter sizes were similar between groups. At the time point of the disease evaluated, the deficiency in IDUA affected the morphology of the epididymis in male Idua−/− mice, whereas sperm appearance and motility and the male’s capacity to mate and impregnate females were preserved.
Background: Lysosomal storage diseases (LSDs) are caused by a mutation in a specific gene. Enzymatic dysfunction results in a progressive storage of substrates that gradually affects lysosomal, cellular and tissue physiology. Their pathophysiological consequences vary according to the nature of the stored substrate, making LSDs complex and multisystemic diseases. Some LSDs result in near normal life expectancies, and advances in treatments mean that more people reach the age to have children, so considering the effects of LSDs on fertility and the risks associated with having children is of growing importance.Objectives: As there is a lack of clinical studies describing the effect of LSDs on the physiology of reproductivity, we undertook a scoping review of studies using animal models of LSDs focusing on reproductive parameters.Methods: We searched six databases: MEDLINE, LILACS, Scopus, Web of Science, Embase and SciELO, and identified 49 articles that met our inclusion criteria.Results: The majority of the studies used male animal models, and a number reported severe morphological and physiological damage in gametes and gonads in models of sphingolipidoses. Models of other LSDs, such as mucopolysaccharidoses, presented important morphological damage.Conclusion: Many of the models found alterations in reproductive systems. Any signs of subfertility or morphological damage in animal models are important, particularly in rodents which are extremely fertile, and may have implications for individuals with LSDs. We suggest the use of more female animal models to better understand the physiopathology of the diseases, and the use of clinical case studies to further explore the risks of individuals with LSDs having children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.