Poultry meat deterioration is caused by environmental conditions, as well as proliferation of different bacterial groups, and their interactions. It has been proposed that meat spoilage involves two bacterial groups: one group that initiates the deterioration process, known as specific spoilage organisms (SSOs), and the other known as spoilage associated organisms (SAOs) which represents all bacteria groups recovered from meat samples before, during, and after the spoilage process. Numerous studies have characterized the diversity of chicken meat SAOs; nonetheless, the identification of the SSOs remains a long-standing question. Based on recent genomic studies, it is suggested that the SSOs should possess an extensive genome size to survive and proliferate in raw meat, a cold, complex, and hostile environment. To evaluate this hypothesis, we performed comparative genomic analyses in members of the meat microbiota to identify microorganisms with extensive genome size and ability to cause chicken meat spoilage. Our studies show that members of the Pseudomonadaceae family have evolved numerous biological features such as large genomic size, slow-growing potential, low 16S rRNA copy number, psychrotrophic, and oligotrophic metabolism to initiate the spoilage of poultry meat. Moreover, inoculation experiments corroborated that these biological traits are associated with the potential to cause chicken meat deterioration. Together, these results provide new insights into the identification of SSO. Further studies are in progress to elucidate the impact of the SSO on meat quality and microbiota diversity.
Worldwide, chicken meat is considered one of the main sources of Salmonella enterica in humans. To protect consumers from this foodborne pathogen, international health authorities recommend the establishment of continuous Salmonella surveillance programs in meat. However, these programs are scarce in many world regions; thus, the goal of the present study was to perform a longitudinal surveillance of S. enterica in chicken meat in Mexico. A total of 1160 samples were collected and analyzed monthly from 2016 to 2018 in ten chicken meat retailers (supermarkets and wet markets) located in central Mexico. The isolation and identification of S. enterica was carried out using conventional and molecular methods. Overall, S. enterica was recovered from 18.1% (210/1160) of the chicken meat samples. Remarkably, during the three years of evaluation, S. enterica was more prevalent (p < 0.0001) in supermarkets (27.2%, 158/580) than in wet markets (9.0%, 52/580). The study was 3.8 times more likely (odds ratio = 3.8, p < 0.0001) to recover S. enterica from supermarkets than wet markets. Additionally, a higher prevalence (p < 0.05) of this pathogen was observed during the spring, summer, autumn, and winter in supermarkets compared with wet markets. Moreover, the recovery rate of S. enterica from supermarkets showed a gradual increase from 20.78% to 42% (p < 0.0001) from 2016 to 2018. Interestingly, no correlation (p > 0.05) was observed between the S. enterica recovery rate in chicken meat and reported cases of Salmonella infections in humans. Higher levels of S. enterica in chicken meat retailed in supermarkets are not unusual; this phenomenon has also been reported in some European and Asian countries. Together, these results uncover an important health threat that needs to be urgently addressed by poultry meat producers and retailers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.