Dielectrophoretically driven microfluidic devices have demonstrated great applicability in biomedical engineering, diagnostic medicine, and biological research. One of the potential fields of application for this technology is in point‐of‐care (POC) devices, ideally allowing for portable, fully integrated, easy to use, low‐cost diagnostic platforms. Two main approaches exist to induce dielectrophoresis (DEP) on suspended particles, that is, electrode‐based DEP and insulator‐based DEP, each featuring different advantages and disadvantages. However, a shared concern lies in the input voltage used to generate the electric field necessary for DEP to take place. Therefore, input voltage can determine portability of a microfluidic device. This review outlines the recent advances in reducing stimulation voltage requirements in DEP‐driven microfluidics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.