Kingella kingae is an emerging pathogen that causes septic arthritis, osteomyelitis, and bacteremia in children from 6 to 48 months of age. The presence of bacteria within or near the bone is associated with an inflammatory process that results in osteolysis, but the underlying pathogenic mechanisms involved are largely unknown. To determine the link between K. kingae and bone loss, we have assessed whether infection per se or through the genesis of a pro-inflammatory microenvironment can promote osteoclastogenesis. For that purpose, we examined both the direct effect of K. kingae and the immune-mediated mechanism involved in K. kingae-infected macrophage-induced osteoclastogenesis. Our results indicate that osteoclastogenesis is stimulated by K. kingae infection directly and indirectly by fueling a potent pro-inflammatory response that drives macrophages to undergo functional osteoclasts via TNF-α and IL-1β induction. Such osteoclastogenic capability of K. kingae is counteracted by their outer membrane vesicles (OMV) in a concentration-dependent manner. In conclusion, this model allowed elucidating the interplay between the K. kingae and their OMV to modulate osteoclastogenesis from exposed macrophages, thus contributing to the modulation in joint and bone damage.
Osteoarticular injury is the most common presentation of active brucellosis in humans. Osteoblasts and adipocytes originate from mesenchymal stem cells (MSC). Since those osteoblasts are bone-forming cells, the predilection of MSC to differentiate into adipocytes or osteoblasts is a potential factor involved in bone loss. In addition, osteoblasts and adipocytes can be converted into each other according to the surrounding microenvironment. Here, we study the incumbency of B. abortus infection in the crosstalk between adipocytes and osteoblasts during differentiation from its precursors. Our results indicate that soluble mediators present in culture supernatants from B. abotus-infected adipocytes inhibit osteoblast mineral matrix deposition in a mechanism dependent on the presence of IL-6 with the concomitant reduction of Runt-related transcription factor 2 (RUNX-2) transcription, but without altering organic matrix deposition and inducing nuclear receptor activator ligand kβ (RANKL) expression. Secondly, B. abortus-infected osteoblasts stimulate adipocyte differentiation with the induction of peroxisome proliferator-activated receptor γ (PPAR-γ) and CCAAT enhancer binding protein β (C/EBP-β). We conclude that adipocyte–osteoblast crosstalk during B. abortus infection could modulate mutual differentiation from its precursor cells, contributing to bone resorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.