The Diels–Alder reaction is recognized to generate highly selective and regiospecific cycloadducts. In this study, we carried out a rheological and kinetic study of N-furfuryl chitosan hydrogels based on the Diels–Alder click reaction with different poly(ethylene)glycol-maleimide derivatives in dilute aqueous acidic solutions. It was possible to prepare clear and transparent hydrogels with excellent mechanical properties. Applying the Winter and Chambon criterion the gel times were estimated at different temperatures, and the activation energy was calculated. The higher the temperature of gelation, the higher the reaction rate. The crosslinking density and the elastic properties seem to be controlled by the diffusion of the polymer segments, rather than by the kinetics of the reaction. An increase in the concentration of any of the two functional groups is accompanied by a higher crosslinking density regardless maleimide:furan molar ratio. The hydrogel showed an improvement in their mechanical properties as the temperature increases up to 70 °C. Above that, there is a drop in G’ values indicating that there is a process opposing to the Diels–Alder reaction, most likely the retro-Diels–Alder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.