The aim of the present study was to investigate the stability of six housekeeping genes, and the relative expression of growth factors (EGF, GDF-9, BMP-15, VEGF, FGF-2, BMP-6, IGF-1 and KL) and hormone receptors (FSH, LH and GH) in goat preantral follicles. To evaluate to stability of housekeeping genes micro-dissected fresh follicles (150-200 μm) as well as follicles that have been in vitro cultured for 12 days were used. In addition, isolated fresh follicles were used to compare expression of various growth factors and hormone receptors before culture. Both fresh and cultured follicles were subjected to total RNA extraction and synthesis of cDNA. After amplification of cDNA by real-time PCR, the geNorm software program was used to evaluate the stability of glyceraldehyde-2-phosphate dehydrogenase (GAPDH), β-tubulin, β-actin, phosphoglycerokinase (PGK), 18S rRNA, ubiquitin (UBQ) and ribosomal protein 19 (RPL-19). In addition, follicular steady-state levels of mRNA from the various growth factors under study were compared. Results demonstrated that, in goat preantral follicles, UBQ and β-actin were the most suitable reference genes and thus could be used as parameters to normalize data from future in vitro studies. In contrast, 18S RNA appeared the least stable gene among the tested housekeeping genes. Analysis of mRNA for several hypophyseal hormone receptors in fresh preantral follicles showed significantly higher FSH-R mRNA levels than those of LH-R and GH-R, and no difference between GH-R and LH-R mRNA levels. In regard growth factor mRNA expression in goat preantral follicles, EGF mRNA levels appeared significantly lower than those of the other studied growth factors. Increasingly higher relative mRNA levels were observed for GDF-9, BMP-15, BMP-6, FGF-2, VEGF, Kl and IGF-1, successively. In conclusion, UBQ and β-actin are the most stable housekeeping genes in fresh and 12-days cultured caprine preantral follicles. Furthermore, in fresh follicles, high levels of FSH-R mRNA are detected while among eight growth factors, IGF-1 is the most highly expressed and EGF the weakest expressed compound.
Expression of BMP-6 mRNA was quantified by real-time polymerase chain reaction (PCR) and the BMP-6 protein was demonstrated by immunohistochemistry in the primordial, primary, secondary, small and large antral follicles of goat. Furthermore, the influence of BMP-6 on increase in diameter, antrum formation and expression of BMP-6 and FSH-R in in vitro cultured secondary follicles was studied. Therefore, goat primordial, primary and secondary follicles, as well as small and large antral follicles were obtained and the mRNA levels of BMP-6 were quantified by PCR in real time. Expression of BMP-6 protein in goat follicles was demonstrated by immunohistochemistry. The influence of BMP-6 in the presence or absence of follicle-stimulating hormone (FSH) on both the development of secondary follicles and the expression of mRNA for BMP-6 and FSH-R was evaluated after 6 days of culture. Furthermore, the follicular diameter and the formation of the antrum were evaluated before and after 6 days of culture and compared by Kruskal-Wallis and chi-squared tests (P < 0.05), respectively. The results show that the level of mRNA for BMP-6 in primary and secondary follicles was significantly higher than in the primordial follicles (P < 0.05). Similar levels of BMP-6 mRNA were observed in cumulus-oocyte complexes and mural granulosa/theca cells from small and large antral follicles, respectively. BMP-6 protein was expressed in oocytes of all categories of follicles and in granulosa cells from secondary follicles onwards. Addition of BMP-6 to the culture medium increased the diameter of secondary follicles mainly by antrum formation after 6 days' culture, in the presence or absence of FSH (P < 0.05). Furthermore, addition of FSH resulted in increased levels of BMP-6 mRNA in these follicles (P < 0.05). Simultaneous administration of FSH and BMP-6 enhanced the levels of FSH receptor (FSH-R) mRNA (P < 0.05). It is concluded that BMP-6 mRNA is increased during transition from primordial to primary/secondary follicles in the goat ovaries and that BMP-6 enhances the growth of cultured secondary follicles.
This study investigated the stability of housekeeping genes (glyceraldehyde-3-phosphate dehydrogenase, β-tubulin, β-actin, phosphoglycerate kinase (PGK), 18S rRNA, ubiquitin and ribosomal protein 19) and the levels of mRNA for bone morphogenetic protein-2 (BMP-2), -4 (BMP-4), -6 (BMP-6), -7 (BMP-7) and -15 (BMP-15), their receptors (BMPR-IA, -IB and -II) and Similar to Mothers Against Decapentaplegic (SMADs) (-1, -5 and -8) in goat follicles of 0.2, 0.5 and 1.0mm, as well as in secondary follicles before and after culture for 18 days. β-tubulin and PGK were the most stable housekeeping genes and the levels of mRNA for BMP-2 in follicles of 0.2mm were higher than in follicles of 0.5 and 1.0mm. For BMP-4, -6 and -7, the highest levels of mRNA were found in follicles of 1.0mm. The expression of BMPR-IB was higher in follicles of 0.2mm, whereas the levels of BMPR-II were higher in follicles of 0.5mm. The levels of mRNA for SMAD-5 were higher in follicles of 0.2mm, whereas SMAD-8 had higher levels in 0.5-mm follicles. After culture, follicles showed increased levels of mRNA for BMP-2 and reduced mRNA for BMP-4, BMP-7, BMPR-IA and SMAD-5. In conclusion, β-tubulin and PGK are the most stable reference genes, and BMPs, their receptors and SMADs have variable levels of mRNA in the follicular size classes analysed.
Recent studies have shown that lectins are promising tools for use in various biotechnological processes, as well as studies of various pathological mechanisms, isolation, and characterization of glycoconjugates and understanding the mechanisms underlying pathological mechanisms conditions, including the inflammatory response. This study aimed to purify, characterize physicochemically, and predict the biological activity of Canavalia oxyphylla lectin (CoxyL) in vitro and in vivo. CoxyL was purified by a single-step affinity chromatography in Sephadex® G-50 column. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the pure lectin consists of a major band of 30 kDa (α-chain) and two minor components (β-chain and γ-chain) of 16 and 13 kDa, respectively. These data were further confirmed by electrospray ionization mass spectrometry, suggesting that CoxyL is a typical ConA-like lectin. In comparison with the average molecular mass of α-chain, the partial amino acid sequence obtained corresponds to approximately 45% of the total CoxyL sequence. CoxyL presented hemagglutinating activity that was specifically inhibited by monosaccharides (D-glucose, D-mannose, and α-methyl-D-mannoside) and glycoproteins (ovalbumin and fetuin). Moreover, CoxyL was shown to be thermostable, exhibiting full hemagglutinating activity up to 60°C, and it was pH-sensitive for 1 h, exhibiting maximal activity at pH 7.0. CoxyL caused toxicity to Artemia nauplii and induced paw edema in rats. This biological activity highlights the importance of lectins as important tools to better understand the mechanisms underlying inflammatory responses.
A novel mannose/glucose-binding lectin from Canavalia virosa (designated as ConV) has been purified from seeds of C. virosa by affinity chromatography on a mannose-Sepharose 4B column. ConV strongly agglutinates rabbit erythrocytes and was inhibited by monosaccharides (D-mannose, D-glucose, and α-methyl-D-mannoside) and glycoproteins (ovalbumin and fetuin). SDS-PAGE revealed three bands corresponding to three subunits (α, β, and γ) confirmed by ESI mass spectrometry with exact mass of 25,480 ± 2 Da, 12,864 ± 1 Da, and 12,633 ± 1 Da, respectively. The purified lectin was more stable in pH ranging from 7.0 to 9.0, supported up to 80 ºC without any loss in activity and unaffected by EDTA. ConV showed no toxicity against Artemia sp. nauplii and relaxed endothelized rat aorta, with the participation of the lectin domain. In our tests, the lectin immobilized on CNBr-Sepharose was capable of binding 0.8 mg of ovalbumin per chromatography, allowing the use of ConV as a tool for capture and purification of glycoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.