The scientific community has responded to the COVID-19 pandemic by rapidly undertaking research to find effective strategies to reduce the burden of this disease. Encouragingly, researchers from a diverse array of fields are collectively working towards this goal. Research with infectious SARS-CoV-2 is undertaken in high containment laboratories, however, it is often desirable to work with samples at lower containment levels. To facilitate the transfer of infectious samples from high containment laboratories, we have tested methods commonly used to inactivate virus and prepare the sample for additional experiments. Incubation at 80°C, a range of detergents, Trizol reagents and UV energies were successful at inactivating a high titre of SARS-CoV-2. Methanol and paraformaldehyde incubation of infected cells also inactivated the virus. These protocols can provide a framework for in house inactivation of SARS-CoV-2 in other laboratories, ensuring the safe use of samples in lower containment levels.
18The scientific community has responded to the COVID-19 pandemic by rapidly undertaking 19 research to find effective strategies to reduce the burden of this disease. Encouragingly, 20 researchers from a diverse array of fields are collectively working towards this goal. Research 21 with infectious SARS-CoV-2 is undertaken in high containment laboratories, however, it is 22 often desirable to work with samples at lower containment levels. To facilitate the transfer of 23 infectious samples from high containment laboratories, we have tested methods commonly 24 used to inactivate virus and prepare the sample for additional experiments. Incubation at 80°C, 25 and a range of detergents and UV energies were successful at inactivating a high titre of 26 SARS-CoV-2. These protocols can provide a framework for in house inactivation of SARS-27CoV-2 in other laboratories, ensuring the safe use of samples in lower containment levels. 28 29
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito–microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required.
Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes Highlights d High-density Wolbachia strains found in An. moucheti and An. demeilloni mosquitoes d Infections are visualized in the ovaries, and maternal transmission was observed d Sequencing at depths and coverages comparable to other known Wolbachia strains d Homologs of cytoplasmic incompatibility factor genes are present in both genomes
Background: Several mosquito collection methods are routinely used in vector control programmes. However, they target different behaviours causing bias in estimation of species diversity and abundance. Given the paucity of mosquito trap data in West Africa, we compared the performance of five trap-lure combinations and Human Landing Catches (HLCs) in Guinea. Methods: CDC light traps (LT), BG sentinel 2 traps (BG2T), gravid traps (GT) and Stealth traps (ST) were compared in a 5 × 5 Latin Square design in three villages in Guinea between June and July 2018. The ST, a portable trap which performs similarly to a LT but incorporates LEDs and incandescent light, was included since it has not been widely tested. BG2T were used with BG and MB5 lures instead of CO 2 to test the efficacy of these attractants. HLCs were performed for 5 nights, but not as part of the Latin Square. A Generalised Linear Mixed Model was applied to compare the effect of the traps, sites and collection times on mosquito abundance. Species identification was confirmed using PCR-based analysis and Sanger sequencing. Results: A total of 10,610 mosquitoes were captured across five traps. ST collected significantly more mosquitoes (7096) than the rest of the traps, but resulted in a higher number of damaged specimens. ST and BG2T collected the highest numbers of Anopheles gambiae (s.l.) and Aedes aegypti mosquitoes, respectively. HLCs captured predominantly An. coluzzii (41%) and hybrids of An. gambiae and An. coluzzii (36%) in contrast to the five traps, which captured predominantly An. melas (83%). The rural site (Senguelen) presented the highest abundance of mosquitoes and overall diversity in comparison with Fandie (semi-rural) and Maferinyah Centre I (semi-urban). Our results confirm the presence of four species for the first time in Guinea. Conclusions: ST collected the highest number of mosquitoes suggesting this trap may play an important role for mosquito surveillance in Guinea and similar sites in West Africa. We recommend the incorporation of molecular tools in entomological studies since they have helped to identify 25 mosquito species in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.