Ready-to-eat food microbiota are the microorganisms present in the dishes that are currently consumed during meals. These microorganisms include those that may have a health benefit, are potentially pathogenic or have not yet been given a function. Foods suitable for consumption are not free of microorganisms; however, within the food industry only yeasts have been given a beneficial function, while other microorganisms such as filamentous fungi and bacteria have been studied for their negative effects on food. We determined the bacterial diversity in samples of highly demanded, freshly prepared, unspoiled ready-to-eat dishes by high-throughput DNA sequencing of 16S rDNA libraries. We found a great bacterial diversity, whereby the most abundant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, TM7 and Thermi, among others. These phyla included bacteria with remarkable abundances in some dishes. The alfa diversity analyses showed that the main dishes had the largest diversity. The beta-diversity analyses clustered the bacterial communities of soups, side plates, desserts, and beverages, and some main dishes. Based on our results we conclude that unspoiled ready-to-eat Mexican dishes contain a rich bacterial diversity, which may contribute to the organoleptic properties of the dishes without representing a sanitary risk for the consumers.
The ready-to-eat food microbiota are the microorganisms present in the dishes that are currently consumed during the meals. These microorganisms include those that may have a health benefit, are potentially pathogenic or have not yet been given a function. Foods suitable for consumption are not free of microorganisms, however, within the food industry only yeasts have been given a beneficial function, while other microorganisms such as filamentous fungi and bacteria have been studied for their negative effect on food. We determined the bacterial diversity in samples of high demanded freshly prepared unspoiled ready-to-eat dishes by High-throughput DNA sequencing of 16S rDNA libraries. We found a great bacterial diversity where the most abundant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, TM7, Thermi, among others. These phyla included bacteria with remarkable abundance in some dishes. The alfa diversity analyses showed that the main dishes had the largest diversity. The beta-diversity analyses clustered the bacterial communities of soups, side plates, desserts, and beverages, and some main dishes. Based on our results we conclude that unspoiled ready-to-eat Mexican dishes contain a rich bacterial diversity, which may contribute to the organoleptic properties of the dishes without representing a sanitary risk for the consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.