In the present study, we investigated the involvement of the mitochondrial permeability transition pore (PTP) in nitric oxide (NO)-induced plant cell death. NO donors such as sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine inhibited growth and caused death in suspension-cultured cells of Citrus sinensis. Cells treated with SNP showed chromatin condensation and fragmentation, characteristic of apoptosis. SNP caused loss of the mitochondrial membrane electrical potential, which was prevented by cyclosporin A (CsA), a specific inhibitor of PTP formation. CsA also prevented the nuclear apoptosis and subsequent Citrus cell death induced by NO. These findings indicate that mitochondrial PTP formation is involved in the signaling pathway by which NO induces apoptosis in cultured Citrus cells. ß 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.