This study aimed to assess the capability of supercritical fluid extraction (SFE) as an alternative and green technique compared to Soxhlet extraction for the production of oils from Opuntia ficus-indica (OFI) seeds originating from Yemen and Italy and Opuntia dillenii (OD) seeds from Yemen. The following parameters were used for SFE extraction: a pressure of 300 bar, a CO2 flow rate of 1 L/h, and temperatures of 40 and 60 °C. The chemical composition, including the fatty acids and tocopherols (vitamin E) of the oils, was determined using chromatographic methods. The highest yield was achieved with Soxhlet extraction. The oils obtained with the different extraction procedures were all characterized by a high level of unsaturated fatty acids. Linoleic acid (≤62% in all samples) was the most abundant one, followed by oleic and vaccenic acid. Thirty triacylglycerols (TAGs) were identified in both OFI and OD seed oils, with trilinolein being the most abundant (29–35%). Vanillin, 4-hydroxybenzaldehyde, vanillic acid, and hydroxytyrosol were phenols detected in both OFI and OD oils. The highest γ-tocopherol content (177 ± 0.23 mg/100 g) was obtained through the SFE of OFI seeds from Yemen. Overall, the results highlighted the potential of SFE as green technology to obtain oils suitable for functional food and nutraceutical products.
BackgroundFollowing our previous research on the differentiation of Italian extra virgin olive oils (EVOOs) by rapid evaporative ionization mass spectrometry coupled to a tandem high resolution mass analyser, the present study deals with the evaluation of another direct mass spectrometry (direct‐MS) approach for the rapid and automatic discrimination of EVOOs. In particular, direct analysis in real time (DART‐MS) was explored as an ambient MS (AMS) source for the building of a top‐quality Italian EVOOs database and fast identification of unknown samples. A single quadrupole detector (QDa) was coupled with DART, taking advantage of a cost‐saving, user‐friendly and less sophisticated instrumental setup. Particularly, quickstrip cards, located on a moving rail holder, were employed, allowing for the direct analysis of 12 EVOO spots in a total analysis time of 6 min. The aim was to develop a reliable statistical model by applying principal component and linear discriminant analyses to clusterize and classify EVOOs according to geographical origin and cultivar, as main factors determining their nutritional and sensory profiles.ResultsSatisfactory results were achieved in terms of identification reliability of unknown EVOOs, as well as false positive risk, thus confirming that the use of AMS combined with chemometrics is a powerful tool against fraudulent activities, without the need for mass accuracy data, which would increase the analysis cost.ConclusionA DART ionization source with a compact and reliable QDa MS analyser allowed for rapid fingerprinting analysis. Furthermore, MS spectra provided quali‐quantitative information successfully related to EVOO differentiation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.