Prevalence of anti-hepatitis E virus (HEV) antibodies is highly variable in developed countries, which seems partly due to differences in assay sensitivity. Using validated sensitive assays, we tested 313 blood donors attending a hospital transfusion unit in central Italy in January and February 2014 for anti-HEV IgG and IgM and HEV RNA. Data on HEV exposure were collected from all donors. Overall anti-HEV IgG prevalence was 49% (153/313). Eating raw dried pig-liver sausage was the only independent predictor of HEV infection (adjusted prevalence rate ratio = 2.14; 95% confidence interval: 1.23-3.74). Three donors were positive for either anti-HEV IgM (n = 2; 0.6%) or HEV RNA (n = 2; 0.6%); they were completely asymptomatic, without alanine aminotransferase (ALT) abnormalities. Of the two HEV RNA-positive donors (both harbouring genotype 3), one was anti-HEV IgG- and IgM-positive, the other was anti-HEV IgG- and IgM-negative. The third donor was positive for anti-HEV IgG and IgM but HEV RNA-negative. HEV infection is therefore hyperendemic among blood donors (80% men 18-64 years-old) from central Italy and associated with local dietary habits. Nearly 1% of donors have acute or recent infection, implying potential transmission to blood recipients. Neither ALT nor anti-HEV IgM testing seems useful to prevent transfusion-transmitted HEV infection.
We have generated unique asymmetric liposomes with phosphatidylserine (PS) distributed at the outer membrane surface to resemble apoptotic bodies and phosphatidic acid (PA) at the inner layer as a strategy to enhance innate antimycobacterial activity in phagocytes while limiting the inflammatory response. Results show that these apoptotic body-like liposomes carrying PA (ABL/ PA) (i) are more efficiently internalized by human macrophages than by nonprofessional phagocytes, (ii) induce cytosolic Ca 2+ influx, (iii) promote Ca 2+
Hepatitis C virus (HCV) proteins are known to interfere at several levels with both innate and adaptive responses of the host. A key target in these effects is the interferon (IFN) signaling pathway. While the effects of nonstructural proteins are well established, the role of structural proteins remains controversial. We investigated the effect of HCV structural proteins on the expression of interferon regulatory factor 1 (IRF-1), a secondary transcription factor of the IFN system responsible for inducing several key antiviral and immunomodulatory genes. We found substantial inhibition of IRF-1 expression in cells expressing the entire HCV replicon. Suppression of IRF-1 synthesis was mainly mediated by the core structural protein and occurred at the transcriptional level. The core protein in turn exerted a transcriptional repression of several interferonstimulated genes, targets of IRF-1, including interleukin-15 (IL-15), IL-12, and low-molecular-mass polypeptide 2. These data recapitulate in a unifying mechanism, i.e., repression of IRF-1 expression, many previously described pathogenetic effects of HCV core protein and suggest that HCV core-induced IRF-1 repression may play a pivotal role in establishing persistent infection by dampening an effective immune response.Infection with hepatitis C virus (HCV) represents the major cause of liver disease, affecting more than 170 million individuals worldwide (26). After a subclinical phase, more than 80% of patients progress to persistent HCV infection, which is the leading cause of chronic liver disease associated with cirrhosis and hepatocellular carcinoma (13). The persistence of the virus in the majority of infected individuals is linked to the ability of HCV to evade and/or antagonize the host immune response at both the local and systemic levels. Accordingly, although hepatocytes are a major target of HCV infection, the virus can also replicate in immune cells, including effector cells (1,11). In this respect, resistance to interferon (IFN) therapy is a hallmark of evolution in persistence, indicating that knocking down the antiviral and immunomodulating effects of IFN is a successful strategy for evading the host immune surveillance (21). The production and secretion of IFN type I is pivotal in inducing a global antiviral state through paracrine IFN production and the subsequent activation of interferon-stimulated genes (ISGs) within the infected cells and in the surrounding tissues (70). The role of IFN in HCV infection is thus crucial (21). Functional genomic analyses from cohorts of human subjects with chronic infection have shown that infection is associated with a gene expression profile marked by ISGs whose level of expression is related to different degrees of liver fibrosis and cirrhosis (67). Similarly, gene expression profiling has demonstrated that acute resolving infections in chimpanzees are associated with high levels of hepatic ISG expression (4).The single-stranded RNA genome of HCV is translated into a polypeptide precursor of 3,010 amino aci...
The E1 gene of hepatitis C virus (HCV) has been cloned and expressed in BL21(DE3)pLys Escherichia coli strain by pET3a vector to analyze changes in membrane permeability produced by this protein. We showed that the expression of E1 (aa 192-383), as well as of two C-terminal fragments (aa 331-383 and aa 341-383) corresponding to the transmembrane (TM) region of this protein, induced a rapid lysis of cells. On the contrary, the expression of a mutant of E1 (aa 192-340), lacking the last 40 amino acids, did not cause cell lysis. The analysis of permeability changes revealed that modification of membrane permeability to several compounds were observed only in clones expressing E1 and C-terminal fragments, while the synthesis of the C-terminal-deleted mutant had little or no effect on permeability. These findings demonstrate that the TM domain of E1 protein has membrane-active properties that may be involved in some aspects of virus-cell interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.