The importance of honey has been recently increased because of its nutrient and therapeutic effects, but the adulteration of honey in terms of botanical origin has increased, too. The floral origin of honeys is usually determined using melisso-palynological analysis and organoleptic characteristics, but the application of these techniques requires some expertise. A number of papers have confirmed the possibility of characterizing honey samples by selected chemical parameters. In this study high-resolution nuclear magnetic resonance (HR-NMR) and multivariate statistical analysis methods were used to identify and classify honeys of five different floral sources. The 71 honey samples (robinia, chestnut, citrus, eucalyptus, polyfloral) were analyzed by HR-NMR using both 1H NMR and heteronuclear multiple bond correlation spectroscopy (HMBC). Spectral data were analyzed by application of unsupervised and supervised pattern recognition and multivariate statistical techniques such as principal component analysis (PCA) and general discriminant analysis (GDA). The use of 1H-(13)C HMBC coupled with appropriate statistical analysis seems to be an efficient technique for the classification of honeys.
During larval development of Salamandra salamandra salamandra chromatophores organize to form the definitive pigment pattern constituted by a black background with yellow patches that are characterized by epidermal xanthophores and dermal iridophores. Simultaneously the dermis undergoes remodeling from the larval stage to that typical of the adult. In the present study we ultrastucturally and immunocytochemically examined skin fragments of S. s. salamandra larvae and juveniles in order to investigate the modalities of xanthophore migration and differentiation in the context of dermal remodeling from the larval to adult stage. Semithin and thin sections showed that the dermis in newly born larvae consists of a compact connective tissue (basement lamella), to which fibroblasts and xanthophores adhere, and of a loose deep collagen layer. As larval development proceeds, fibroblasts and xanthophores invade the basement lamella, skin glands develop and the adult dermis forms. At metamorphosis, xanthophores reach the epidermis crossing through the basal lamina. We examined immunocytochemically the expression of signal molecules, such as fibronectin, vitronectin, beta1-integrin, chondroitin sulfate, E-cadherin, N-cadherin and plasminogen activator, which are known to be involved in regulating morphogenetic events. Their role in dermal remodeling and in pigment pattern formation is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.