The growth behavior of the intermetallic compounds that formed at the interfaces between Sn-Ag-Bi-In solders and Cu substrates during solid-state aging is investigated. The compositions of the intermetallic compounds are Cu 3 (Sn,In) near the Cu substrates and Cu 6 (Sn,In) 5 near the solders; very little Bi or Ag was dissolved in the compounds. The aging temperatures were 120°C, 150°C, and 180°C for 5 days, 10 days, 20 days, and 40 days. The change in the morphology of Cu 6 (Sn,In) 5 from scallop type to layer type was prominent at the aging temperature of 180°C. The thickness of the compound layers did not vary much at the lower aging temperatures but followed the diffusioncontrolled mechanism at 180°C. Massive Kirkendall voids were observed in Cu 3 (Sn,In) layers at the aging temperature of 180°C.
This investigation elucidates stress evolution in situ in tin strips under electromigration using synchrotron radiation x-ray. Minute variations in stress are determined precisely using intense x-rays. Back stresses gradient with the values of 5.5 and 16.5 MPa/cm, which are induced by the current densities of 1 × 103 and 5 × 103 A/cm2, respectively, are measured directly. The effective diffusivities that include both grain and lattice diffusion at various current densities are determined. The Joule heating is observed, ranging from 5 to 15 °C, according to various current densities passed through the stripes. Results of this study suggest that the protective oxide layer on the surfaces significantly influences the kinetics of stress evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.