Cities are areas where big data is having a real impact. Town planners and administration bodies just need the right tools at their fingertips to consume all the data points that a town or city generate and then be able to turn that into actions that improve peoples lives. In this case big data is definitely a phenomenon that has a direct impact on the quality of life for those of us that choose to live in a town or city. Smart Cities of tomorrow will rely not only on sensors within the city infrastructure, but also on a large number of devices that will willingly sense and integrate their data into technological platforms used for introspection into the habits and situations of individuals and city-large communities. Predictions say that cities will generate over 4.1 terabytes per day per square kilometer of urbanized land area by 2016. Handling efficiently such amounts of data already is already a challenge. In this paper we present our solutions designed to support next-generation Big Data applications. We first present CAPIM, a platform designed to automate the process of collecting and aggregating context information on a large scale. It integrates services designed to collect context data (location, users profile and characteristics, as well as the environment). We next present a concrete implementation of an Intelligent Transportation System designed on top of CAPIM. The application is designed to assist users and city officials better understand traffic problems in large cities. Finally, we present a solution to handle efficient storage of context data on a large scale. The combination of these services provide support for intelligent Smart City applications, for
Because the number of elderly people is predicted to increase quickly in the upcoming years, “aging in place” (which refers to living at home regardless of age and other factors) is becoming an important topic in the area of ambient assisted living. Therefore, in this paper, we propose a human physical activity recognition system based on data collected from smartphone sensors. The proposed approach implies developing a classifier using three sensors available on a smartphone: accelerometer, gyroscope, and gravity sensor. We have chosen to implement our solution on mobile phones because they are ubiquitous and do not require the subjects to carry additional sensors that might impede their activities. For our proposal, we target walking, running, sitting, standing, ascending, and descending stairs. We evaluate the solution against two datasets (an internal one collected by us and an external one) with great effect. Results show good accuracy for recognizing all six activities, with especially good results obtained for walking, running, sitting, and standing. The system is fully implemented on a mobile device as an Android application.
Data dissemination in opportunistic networks poses a series of challenges, since there is no central entity aware of all the nodes' subscriptions. Each individual node is only aware of its own interests and those of a node that it is contact with, if any. Thus, dissemination is generally performed using epidemic algorithms that flood the network, but they have the disadvantage that the network overhead and congestion are very high. In this paper, we propose ONSIDE, an algorithm that leverages a node's online social connections (i.e. friends on social networks such as Facebook or Google+), its interests and the history of contacts, in order to decrease congestion and required bandwidth, while not affecting the overall network's hit rate and the delivery latency. We present the results of testing our algorithm using an opportunistic network emulator and three mobility traces taken in different environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.