3D Web is a potential platform for publishing and distributing 3D visualizations that have proven useful in enabling the participation of the general public in urban planning. However, technical requirements imposed by detailed and rich real-world plans and related functionalities are demanding for 3D web technologies. In this paper we explore the maturity of modern 3D web technologies in participatory urban planning through two real-world case studies. Applications built on Unity-based platform are published on the web to allow the general public to create, browse and comment on urban plans. The virtual models of seven urban development sites of di erent visual styles are optimized in terms of download sizes and memory use to be feasible on browsers used by the general public. We report qualitative feedback from users and present a technical analysis of the applications in terms of download sizes, runtime performance and memory use. We summarize the ndings of the case studies into an assessment of the general feasibility of modern 3D web technologies in web-based urban planning.
During development of power IntegratedCircuits (IC), several iterations between the design and test/ measurement steps are performed. Computer-aided engineering significantly shortens the product development process because the numerical simulations can identify and remediate most deficiencies during the design stage. The recent IC manufacturing technologies lead to ca. 10 4 -order scale separation between transistor cell details and the device active area, resulting in very complex IC models. For the IC complexity to be overcome, advanced multi-scale analysis methods are required to perform accurate simulations in a decent time (order of hours). This paper proposes an advanced and enhanced multi-scale simulation method for the thermo-mechanical analysis of power ICs. The computational IC structure is automatically generated from a Cadence layout and partitioned into far-field and homogenized regions -the macro-model. Detailed localized micro-scale sub-models are assigned to limited portions of the homogenized region. The two-way simulated data transfer between the homogenized macro-model and the micro sub-models is one multi-scale approach novelty proposed in this paper. The method is validated on a real test chip structure presented in literature. The proposed multi-scale approach in conjunction with the two-way macro-micro data transfer lead to similar accuracy in the prediction of defect location, yet with significant simulation time -and computational resource reduction (CPU time and RAM usage reduced by almost 80% and 60% respectively) compared to the method used as reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.