A new potential energy surface for the gas-phase F(2P)+CH4 reaction and its deuterated analogues is reported, and its kinetics and dynamics are studied exhaustively. This semiempirical surface is completely symmetric with respect to the permutation of the four methane hydrogen atoms, and it is calibrated to reproduce the topology of the reaction and the experimental thermal rate constants. For the kinetics, the thermal rate constants were calculated using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 180-500 K. The theoretical results reproduce the experimental variation with temperature. The influence of the tunneling factor is negligible, due to the flattening of the surface in the entrance valley, and we found a direct dependence on temperature, and therefore positive and small activation energies, in agreement with experiment. Two sets of kinetic isotope effects were calculated, and they show good agreement with the sparse experimental data. The coupling between the reaction coordinate and the vibrational modes shows qualitatively that the FH stretching and the CH3 umbrella bending modes in the products appear vibrationally excited. The dynamics study was performed using quasi-classical trajectory calculations, including corrections to avoid zero-point energy leakage along the trajectories. First, we found that the FH(nu',j') rovibrational distributions agree with experiment. Second, the excitation function presents an oscillatory pattern, reminiscent of a reactive resonance. Third, the state specific scattering distributions present reasonable agreement with experiment, and as the FH(nu') vibrational state increases the scattering angle becomes more forward. These kinetics and dynamics results seem to indicate that a single, adiabatic potential energy surface is adequate to describe this reaction, and the reasonable agreement with experiment (always qualitative and sometimes quantitative) lends confidence to the new surface.
A modified and recalibrated potential energy surface for the gas-phase Cl+CH4-->HCl+CH3 reaction is reported and tested. It is completely symmetric with respect to the permutation of the four methane hydrogen atoms and is calibrated with respect to updated experimental and theoretical stationary point properties and experimental forward thermal rate constants. From the kinetics point of view, the forward and reverse thermal rate constants and the activation energies were calculated using the variational transition-state theory with semiclassical transmission coefficients over a wide temperature range of 150-2500 K. The theoretical results reproduce the available experimental data, with a small curvature of the Arrhenius plot which indicates the role of tunneling in this hydrogen abstraction reaction. A dynamics study was also performed on this PES using quasiclassical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories. First, we found a noticeable internal energy in the coproduct methyl radical, both in the ground-state [CH4 (v=0)] and vibrationally excited [CH4 (v=1)] reactions. This CH3 internal energy was directly precluded in some experiments or oversimplified in previous theoretical studies using pseudotriatomic models. Second, our QCT calculations give HCl rotational distributions slightly hotter than those in experiment, but correctly describing the experimental trend of decreasing the HCl product rotation excitation in going from HCl (v'=0) to HCl (v'=1) for the CH4 (v=1) reaction. Third, the state specific scattering distributions present a reasonable agreement with experiment, although they tend to make the reaction more forward and backward scattered than found experimentally probably because of the hotter rotational distribution and the deficiencies of the QCT methods.
A modified and recalibrated potential energy surface (PES) is reported for the gas-phase F(2P(3/2),2P(1/2)) + CH4 reaction and its deuterated analogue. This semiempirical surface is completely symmetric with respect to the permutation of the four methane hydrogen atoms and is calibrated with respect to the updated experimental and theoretical stationary point properties and experimental thermal rate constants. To take into account the two spin-orbit electronic states of the fluorine atom, two versions of the surface were constructed, the PES-SO and PES-NOSO surfaces, which differ in the choice of the zero reference level of the reactants. On both surfaces, the thermal rate constants were calculated using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 180-500 K. While the PES-SO surface overestimates the experimental rate constants, the PES-NOSO surface shows a better agreement, reproducing the experimental variation with temperature. The influence of the tunneling factor is negligible, due to the flattening of the surface in the entrance valley, and we found a direct dependence on temperature, and therefore positive and small activation energies, in agreement with experiment. The kinetic isotope effects calculated showed good agreement with the sparse experimental data at 283 and 298 K. Finally, on the PES-NOSO surface, other dynamical features, such as the coupling between the reaction coordinate and the vibrational modes, were analyzed. It was found qualitatively that the FH stretching and the CH3 umbrella bending modes in the products appear vibrationally excited. These kinetics and dynamics results seem to indicate that a single, adiabatic PES is adequate to describe this reaction.
Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol, with a low height barrier, 2.44 kcal mol, and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range 200-1400 K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl(P) state, have relative importance, but do not explain the whole discrepancy. Finally, the activation energy and the kinetics isotope effects reproduce the experimental information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.