A protocol for the anti-Markovnikov hydrofunctionalization of alkenes has been developed by the use of a benzyl group as a traceless redox-active hydrogen donor. Under copper catalysis and in the presence of CF - or N -containing hypervalent iodine reagents, a series of homoallylic alcohol derivatives were hydrofunctionalized regioselectivity. A similar principle was also applied to the hydrofunctionalization of alkenols.
A simple protocol for hydrodebromination and -deiodination of halo(hetero)arenes was enabled by sodium hydride (NaH) in the presence of lithium iodide (LiI). Mechanistic studies showed that an unusual concerted nucleophilic aromatic substitution operates in the present process.
A method to prepare α-acyl-β-amino acid and 2,2-diacyl aziridine derivatives efficiently from Cu(OTf)(2) + 1,10-phenanthroline (1,10-phen)-catalyzed amination and aziridination of 2-alkyl substituted 1,3-dicarbonyl compounds with PhI═NTs is described. By taking advantage of the orthogonal modes of reactivity of the substrate through slight modification of the reaction conditions, a divergence in product selectivity was observed. In the presence of 1.2 equiv of the iminoiodane, amination of the allylic C-H bond of the enolic form of the substrate, formed in situ through coordination to the Lewis acidic metal catalyst, was found to selectively occur and give the β-aminated adduct. On the other hand, increasing the amount of the nitrogen source from 1.2 to 2-3 equiv was discovered to result in preferential formal aziridination of the C-C bond of the 2-alkyl substituent of the starting material and formation of the aziridine product.
A method for the amidation of aldehydes with PhI=NTs/PhI=NNs as the nitrogen source and an inexpensive iron(II) chloride + pyridine as the in situ formed precatalyst under mild conditions at room temperature or microwave assisted conditions is described. The reaction was operationally straightforward and accomplished in moderate to excellent product yields (20-99%) and with complete chemoselectivity with the new C-N bond forming only at the formylic C-H bond in substrates containing other reactive functional groups. By utilizing microwave irradiation, comparable product yields and short reaction times of 1 h could be accomplished. The mechanism is suggested to involve insertion of a putative iron-nitrene/imido group to the formylic C-H bond of the substrate via a H-atom abstraction/radical rebound pathway mediated by the precatalyst [Fe(py)(4)Cl(2)] generated in situ from reaction of FeCl(2) with pyridine.
A new protocol for the dearylation of arylphosphine oxides was developed using sodium hydride (NaH) in the presence of lithium iodide (LiI). The transient sodium phosphinite could be functionalized with a range of electrophiles in a one-pot fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.