Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.
The genus Trichoderma is a potential biocontrol agent against several phytopathogenic fungi. One parameter for its successful use is an efficient coiling process followed by a substantial production of hydrolytic enzymes. The interaction between fifteen isolates of Trichoderma harzianum and the soil-borne plant pathogen, Rhizoctonia solani, was studied by light microscopy and transmission electron microscopy (TEM). Macroscopic observations of fungal growth in dual cultures revealed that growth inhibition of the pathogen occurred soon after contact with the antagonist. All T. harzianum isolates tested exhibited coiling around the hyphae of R. solani. The strains ALL23, ALL40, ALL41, ALL43 and ALL49 did not differ in coiling frequency and gave equal coiling performances. No correlation between coiling frequency and the production of cell wall-degrading chitinases, N-acetyl-beta-D-glucosaminidase and beta-1,3-glucanases, was found.
Background Systemic arterial hypertension (SAH) is a multifactorial condition that already affects one third of the worldwide population. The identification of candidate genes for hypertension is a challenge for the next years. Nevertheless, the small contribution of each individual genetic factor to the disease brings the necessity of evaluate genes in an integrative manner and taking into consideration the physiological interaction of functions. Angiotensin I–converting enzymes, ACE and ACE2, are key regulators of blood pressure that have counterbalance roles by acting on vasoactive peptides from Renin-Angiotensin-Aldosterone System (RAAS). Insertion/deletion (I/D) polymorphism of ACE gene and single nucleotide polymorphism G8790A of ACE2 gene have been associated with susceptibility to SAH, but the literature is controversial. We proposed to evaluate these two polymorphisms jointly exploring the combined effects of ACE and ACE2 genotypes on SAH susceptibility, an approach that have not been done yet for ACE and ACE2 polymorphisms. Methods and findings This genetic association study included 117 hypertensive (mean age 59.7 years) patients and 123 normotensive and diabetes-free controls (mean age 57.5 years). ACE and ACE2 polymorphisms were genotyped by SYBR Green real-time PCR and RFLP-PCR, respectively. Crude and adjusted odds ratio (OR) values were calculated to estimate the susceptibility to SAH development. It was obtained homogeneity regarding distribution by sex, age range, smoking, alcohol consumption and body mass index (BMI) between case and control groups. No-association was verified for each gene individually, but the combination of ACE and ACE2 polymorphisms on female gender revealed a significative association for DD/G_ carriers who had a 3-fold increased risk to SAH development (p = 0.03), with a stronger susceptibility on DD/GG carriers (7-fold increased risk, p = 0.01). The D allele of ACE showed association with altered levels of lipid profile variables on case group (VLDL-cholesterol, p = 0.01) and DD genotype in all individuals analysis (triglycerides, p = 0.01 and VLDL-cholesterol, p = 0.01). Conclusion These findings indicate that the combination of ACE and ACE2 polymorphisms effects may play a role in SAH predisposition been the DD/G_ genotype the susceptibility profile. This result allowed us to raise the hypothesis that an increased activity of ACE (prohypertensive effects) in conjunction with reduced ACE2 activity (antihypertensive effects) could be the underlining mechanism. The association of ACE D allele with lipid alterations indicate t...
During our screening of amylolytic microorganisms from Brazilian fruits, we isolated a yeast strain classified as Cryptococcus flavus. When grown on starch-containing medium this strain exhibited the highest amylase production after 24 h of cultivation. The extracellular amylase from C. flavus was purified from the culture broth by a single step using chromatography on a Sephacryl S-100 column. The enzyme was purified 16.14-fold with a yield of 50.21% of the total activity. The purified enzyme was a glycoprotein with an apparent molecular mass of 75 and 84.5 kDa as estimated by sodium dodecyl sulfate^polyacrylamide gel electrophoresis and gel filtration, respectively. The enzyme lost approximately 50% of the molecular mass after treatment with glycosidases. The major end products of starch, amylose, amylopectin, pullulan and glycogen were maltose and maltotriose. The K m value for the pure enzyme was 0.056 mg ml 31 with soluble starch as the substrate. Enzyme activity was optimal at pH 5.5 and 50 ‡C. The enzyme retained 90% of the activity after incubation at 50 ‡C for 60 min and was inhibited by Cu 2þ , Fe 2þ and Hg 2þ .
Summary. The non-immunoglobulin component of human milk responsible for the inhibition of Escherichia coli cell adhesion (haemagglutination) mediated by colonisation factor antigen 1 (CFAl) was determined by chromatographic fractionation of human whey proteins with Sephadex G-200, DEAE cellulose and heparin-sepharose. Pure free secretory component (fSC) and pure lactoferrin (Lo were isolated and both compounds inhibited the haemagglutination induced by E. coli CFAl+. The lowest concentrations of purified fSC and Lf able to inhibit the haemagglutination induced by E. coli strain TR50/3 CFA1' were 0-06 mg/ml and 0.1 mg/ml respectively. Commercially available lactoferrin from human milk and transferrin from human serum, which has a great structural analogy to lactoferrin, also inhibited the haemagglutination. The lowest concentrations of the commercial lactoferrin and transferrin able to inhibit the haemagglutination induced by E. coli TR50/3 CFA1+ were 0.03 mg/ml and 0-4 mg/ml, respectively. These results indicate that fSC and Lf may be important non-specific defence factors against enterotoxigenic E. coli infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.