The purposes of this investigation were to determine if increasing the bending stiffness of sprint shoes increases sprinting performance and to determine whether simple anthropometric factors can be used to predict shoe bending stiffness for optimal performance. Thirty-four athletes were tested using four different shoe conditions--a standard condition consisting of their currently used footwear and three conditions where the bending stiffness was increased systematically. The sprinters performed maximal effort 40 m sprints and their sprint times were recorded from 20 to 40 m. On average, increasing the shoe bending stiffness increased sprint performance. The stiffness each athlete required for his or her maximal performance was subject specific but was not related to subject mass, height, shoe size or skill level. It is speculated that individual differences in the force-length and force-velocity relationships of the calf muscles may influence the appropriate shoe stiffness for each athlete to obtain their maximal performance.
Changes in weather patterns directly impact urban transport infrastructures. The increase in temperature and the ongoing precipitation changes should be handled and managed more frequently. In urban areas, most of the soil is impermeable and water hardly infiltrates into the subsoil. Permeable pavement is a technology that helps mitigate the effects of urban heat islands and surface impermeabilization. Porous concrete for pedestrian pavements ensures good structural, functional, and environmental performances. A pervious concrete mix differs from a conventional one in terms of the gradation of aggregates, namely, a lack of fine aggregates. The material porosity (on average 20%) causes compressive and flexural strengths lower than those of traditional concrete. The material is suitable for low-load pavements where the passage of motorized vehicles is forbidden or occasional. The pavement can be laid either monolithically or modularly, using two operating systems: returning water to underground aquifers and reducing runoff. The latter is the most frequently adopted in urban areas, where pedestrian and interdicted to motorized vehicle areas form a continuous and distributed network. In a common urban quarter, where 80% of the surface is impermeable, porous concrete pavements could cover up to 6% of the surface and provide architectural and aesthetic value for the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.