We investigate macromolecular physical gels (strontium alginates) in a wide range of aging times and length scales by combining linear stress relaxation and dynamic light scattering (DLS) experiments. Stress relaxation shows an early logarithmic decay followed by a stretched exponential behavior, leading to define two characteristic times, which increase as distinct power laws of gel age. The DLS clearly displays anomalous microscopic dynamics, with compressed exponential decay of autocorrelation functions and ballistic wavelength dependence of the decay time. Thus, our results demonstrate that stretched stress relaxation can coexist with compressed intensity autocorrelation functions. In addition, comparison between rheology and DLS allows for the identification of two characteristic lengths that we interpret as the typical size of collapsing pores in the gel and of avalanche-like rearrangements. We discuss this scenario in terms of some recently proposed ideas on anomalous aging, such as ultralong-ranged dynamical correlations in closely athermal systems.
The effect of aging on the mechanical behaviour of ionically cross-linked alginate gels is studied in detail. Relaxation experiments upon both unconfined compression and torsion are performed on samples at different aging times. The elastic moduli of the gel are found to increase with the aging time, whereas the internal (constitutive) mechanism of the relaxation of the solid component of the gel is found to be unaffected by aging. It is demonstrated that the Linear Visco-Elastic Stress/Diffusion Coupling model [D. Larobina, F. Greco, J. Chem. Phys., 2012, 136, 134904], recently developed by two of the present authors, is able to quantitatively reproduce the experimental data for differently aged samples, at early-to-intermediate relaxation times. Moreover, it is shown that the gel always undergoes a spontaneous expulsion of water (syneresis) and some spontaneous deformation for a sufficiently long observation time, even in the absence of any externally imposed strain. The latter phenomenology progressively slows down with increasing of the gel age. By proper time shifting of the late relaxation decays, i.e., by properly defining an "effective time", master curves can be obtained in all cases, with all data pertaining to differently aged samples collapsing on a single relaxation law for each deformation history. The dependence of the shift factors on the aging time is found to follow a power law behavior, with an exponent of 1.39.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.