Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) is one of the most widely used hole transport layer (HTL) in polymer solar cells (PSCs). However, the improving of the conductivity and transparency of PEDOT:PSS thin films is still needed. To solve this problem, we here introduce 2-methoxyethanol (EGME) and dimethyl sulfoxide (DMSO) mixed secondary solvent to PEDOT:PSS solution as a novel additive to the best of our knowledge. We determined that the EGME-DMSO doped PEDOT:PSS layer provides better energy level alignment, conductivity and morphology with the help of methods of UV-Vis spectroscopy, atomic force microscopy, etc. The addition of 15% (v/v.) volume of EGME-DMSO mixed co-solvent improves the efficiency from 2.8% of control device to 3.9%. The significant enhancement of the short-circuit current density (Jsc) of 13.7 to 16.5 mA cm−2 is the main reason for this increase of performance due to better charge transport properties. This suggests that the EGME-DMSO mixed co-solvent doping into PEDOT:PSS solution is a simple approach to fabricate highly efficient PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.