Sibutramine is used in the treatment of obesity due to its ability to influence feelings of hunger and satiety by inhibiting the re-uptake of serotonin and noradrenalin in the central nervous system (CNS). Sibutramine use has been associated with numerous adverse events in particular cardiovascular complications possibly due to the formation of thrombi. This ultrastructural descriptive study investigated the effect of sibutramine on blood coagulation, specifically the effect on morphology of platelets and fibrin networks using scanning electron microscopy. Male Sprague-Dawley rats treated with either a recommended therapeutic dose [low dosage 1.32 mg/kg] or a toxicological higher dose [high dosage 13.2 mg/kg] of sibutramine for 28 days were used and compared to control animals. Blood samples were collected and plasma smears were prepared for platelet evaluation. Following the addition of thrombin to the plasma samples, the morphology of the fibrin clots was evaluated. Platelet evaluation by scanning electron microscopy revealed morphology typical of a prothrombotic state with a characteristic excessive platelet activation in both low-dose (LD) and high-dose (HD) rats. The fibrin clots of sibutramine-treated rats, LD and HD revealed fused thick fibers with thin fibers forming a netlike structure over the thick fibers which differ considerably from the organized structure of the control animals. It can be concluded that sibutramine alters the ultrastructure of platelets and fibrin networks creating a prothrombotic state.
Sibutramine hydrochloride monohydrate is a weight loss agent indicated for the treatment of obesity. Although it has been banned from most markets, studies are still relevant as it is often a hidden ingredient in herbal and over the counter slimming products. Sibutramine induces liver fibrosis with steatosis in female Sprague-Dawley rats fed a high-energy diet without significant weight gain. In this study, using the same animal model, the effect of Sibutramine on lung morphology was investigated using histological evaluation of the terminal bronchiole and transmission electron microscopy evaluation of the respiratory tissue. From these results Sibutramine was found to induce lung fibrosis in Sprague-Dawley rats as increased collagen synthesis, mast cell accumulation and aggregates of Bronchus Associated Lymphoid Tissue (BALT) in the terminal bronchiole as well as increased collagen deposition in the respiratory tissue was seen.
Sibutramine is widely used as a weight-loss substance in the treatment of obesity and is a selective inhibitor of the neuronal reuptake of serotonin and noradrenaline. Although banned it is often a hidden ingredient in herbal and dietary supplements which are widely used by the general public. Various weight loss products, including sibutramine, have successfully been tested in animal models of diet-induced obesity. In the female Sprague-Dawley rat model, fed a high-energy diet that did not produce a significant increase in BMI, the cellular structure of the liver was evaluated using transmission electron microscopy. Compared to controls showing no damage, the livers of rats fed a high-energy diet were found to have increased fibrosis without steatosis, while for rats fed high-energy diet with sibutramine, fibrosis was increased and steatosis had developed. In conclusion, in female rats fed a highenergy diet that does not result in weight gain hepatic fibrosis occurs without steatosis. In these rats the co-administration of sibutramine increases the degree of fibrosis and steatosis develops. Although it has been widely believed that sibutramine is not hepatotoxic, this study clearly shows that at an ultrastructural level, rats fed a high-energy diet treated with sibutramine show signs of hepatotoxicity.
The aim of this study was to investigate the effect of Sibutramine on platelet ultrastructure and discuss the morphological observations in relation to known physiological effects of the compound. Six-week-old, female Spraque-Dawley rats were used in this study. The animals were placed on a high energy diet after which sibutramine administration followed. Blood was drawn on the day of termination and platelet rich plasma was obtained to prepare plasma smears for analysis. Scanning electron microscopy was used to investigate the ultrastructure of the platelets. Platelets of the Sibutramine-treated animals showed smooth surface with limited pseudopodia formation when compared with that of the control animals. Higher magnification of the platelet surface showed membrane tears and swelling, typically seen in necrotic cells. It can therefore be concluded from these results that Sibutramine alters the membrane morphology of platelets to that typical of necrotic cells.
Exposure to drugs during pregnancy is a major concern, as some teratogenic compounds can influence normal foetal development. Although the use of drugs during pregnancy should generally be avoided, exposure of the developing foetus to teratogens may occur unknowingly since these compounds may be hidden in products that are being marketed as "all natural". The aim of the current study was to investigate the possible teratogenic and cellular effects of sibutramine -a serotonin-norepinephrine reuptake inhibitor used in the treatment of obesity -on the heart and liver tissue of chick embryos. Ephedrine was used as a positive control. The chick embryo model was chosen because it has been used in studying developmental and experimental biology and teratology with great success. The 2 embryos were exposed to three different concentrations of sibutramine and ephedrine respectively. The results obtained revealed that both compounds exhibited embryotoxicity when compared to the control groups. Liver and heart tissue of the exposed embryos was severely affected by these compounds in a dose-related manner. Morphology similar to that of muscle dystrophy was observed in the heart, where the muscle tissue was infiltrated by adipose and connective tissue. Severe liver steatosis was also noted. A more in-depth investigation into the molecular pathways involved might provide more information on the exact mechanism of toxicity of these products influencing embryonic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.