Consumers are seeking for native-traditional foods to improve their intake of both nutrients and health-promoting phytochemicals. This study was designed to evaluate the difference in content of nutrients and bioactive compounds from handmade tortillas elaborated by a small-scale artisan producer and tortillas sold by a large food retailer available to consumers. All tortillas were analyzed for chemical composition, dietary fiber, calcium and phytochemical content, antioxidant capacity, and phenolic acids profile. Chemical and nutritional variation in the tortillas was estimated using principal component analysis. Data showed that artisan tortillas made from blue and white maize landraces had significantly (p < 0.05) higher content of nutritional and bioactive compounds compared to those of the supermarket. Handmade blue maize tortillas (HBMT) had a high content of free phenolics content and the highest antioxidant capacity (DPPH and ABTS methods), which was around 1.7–2.1 fold higher than that of commercially produced white maize tortillas (CWMT). Total dietary fiber was higher in HBMT (15.7 ± 1.06 g/100 g) than in CWMT (11.6 ± 0.96 g/100 g). CWMT had the lowest calcium content (42.1 ± 0.9 mg/100 g) compared to handmade tortillas (155.5 ± 4.5 mg/100 g). HPLC results indicated the presence of ferulic,
p-
coumaric, caffeic, syringic and 4-hydroxybenzoic acids. Interestingly, handmade tortillas from blue maize had 4.5-fold ferulic acid content compared with commercially produced white maize tortillas, consequently it can be a good source of phenolic antioxidants, particularly ferulic acid. This study showed that artisan fresh tortillas had superior nutritional-nutraceutical properties compared to CWMT.
Mango by-products are important sources of bioactive compounds generated by agro-industrial process. During mango processing, 35–60% of the fruit is discarded, in many cases without treatment, generating environmental problems and economic losses. These wastes are constituted by peels and seeds (tegument and kernel). The aim of this review was to describe the extraction, identification, and quantification of bioactive compounds, as well as their potential applications, published in the last ten years. The main bioactive compounds in mango by-products are polyphenols and carotenoids, among others. Polyphenols are known for their high antioxidant and antimicrobial activities. Carotenoids show provitamin A and antioxidant activity. Among the mango by-products, the kernel has been studied more than tegument and peels because of the proportion and composition. The kernel represents 45–85% of the seed. The main bioactive components reported for the kernel are gallic, caffeic, cinnamic, tannic, and chlorogenic acids; methyl and ethyl gallates; mangiferin, rutin, hesperidin, and gallotannins; and penta-O-galloyl-glucoside and rhamnetin-3-[6-2-butenoil-hexoside]. Meanwhile, gallic acid, ferulic acid, and catechin are reported for mango peel. Although most of the reports are at the laboratory level, they include potential applications in the fields of food, active packaging, oil and fat, and pharmaceutics. At the market level, two trends will stimulate the industrial production of bioactive compounds from mango by-products: the increasing demand for industrialized fruit products (that will increase the by-products) and the increase in the consumption of bioactive ingredients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.