Porphyromonas gingivalis has virulence factors such as gingipain and lipopolysaccharide, causing bacteremia to reach the brain and activate neuroinflammatory release cytokines. This study analyzed the effect of the co-culture of neuron cells with P. gingivalis coated with anti-P. gingivalis antibodies against cytokines produced by neuron cells. The gene expressions of the TNF, IL1B, NOS2 in neurons was evaluated using RT-qPCR. The results showed that P. gingivalis coated with anti-P. gingivalis antibody before co-culture with neuron cells could decrease the gene expression of TNF, IL1B, and NOS2 of neuron cells.
Porphyromonas gingivalis has virulence factors such as gingipain and lipopolysaccharide, causing bacteremia to reach the brain and activate neuroinflammatory release cytokines. This study analyzed the effect of the co-culture of neuron cells with P. gingivalis coated with anti-P. gingivalis antibodies against cytokines produced by neuron cells. The gene expressions of the TNF, IL1B, iNOS2 in neurons was evaluated using RT-qPCR. The results showed that P. gingivalis coated with anti-P. gingivalis antibody before co-culture with neuron cells could decrease the gene expression of TNF, IL1B, and iNOS2 of neuron cells.
Porphyromonas gingivalis has virulence factors such as gingipain and lipopolysaccharide, causing bacteremia to reach the brain and activate neuroinflammatory release cytokines. This study analyzed the effect of the co-culture of neuron cells with P. gingivalis coated with anti-P. gingivalis antibodies against cytokines produced by neuron cells. The gene expressions of the TNF, IL1B, iNOS2 in neurons was evaluated using RT-qPCR. The results showed that P. gingivalis coated with anti-P. gingivalis antibody before co-culture with neuron cells could decrease the gene expression of TNF, IL1B, and iNOS2 of neuron cells.
Porphyromonas gingivalis has virulence factors such as gingipain and lipopolysaccharide, causing bacteremia to reach the brain and activate neuroinflammatory release cytokines. This study analyzed the effect of the co-culture of neuron cells with P. gingivalis coated with anti-P. gingivalis antibodies against cytokines produced by neuron cells. The gene expressions of the TNF, IL1B, NOS2 in neurons was evaluated using RT-qPCR. The results showed that P. gingivalis coated with anti-P. gingivalis antibody before co-culture with neuron cells could decrease the gene expression of TNF, IL1B, and NOS2 of neuron cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.