A study of the metabolism of anethole dithiolethione (ADT, 5-(p-methoxyphenyl)-3-1,2-dithiole-3-thione) by rat and human liver microsomes showed the formation of the corresponding -oxide and the-oxide of desmethyl-ADT (dmADT, 5-(p-hydroxyphenyl)-3-1,2-dithiole-3-thione), and of p-methoxy-acetophenone (pMA) and p-hydroxy-acetophenone (pHA), in addition to the previously described metabolites, dmADT, anethole dithiolone (ADO, 5-(p-methoxyphenyl)-3-1,2-dithiole-3-one) and its demethylated derivative dmADO [5-(p-hydroxyphenyl)-3-1,2-dithiole-3-one]. The microsomal metabolism of ADO under identical conditions led to dmADO and to pMA and pHA. The metabolites of ADT derive from two competing oxidative pathways: an -demethylation catalyzed by cytochromes P450 and an-oxidation mainly catalyzed by flavin-dependent monooxygenases (FMO) and, to a minor extent, by CYP enzymes. The most active human CYP enzymes for ADT demethylation appeared to be CYP1A1, 1A2, 1B1, 2C9, 2C19, and 2E1. ADT -oxidation is catalyzed by FMO 1 and 3, and to a minor extent by CYP enzymes such as CYP3A4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.