Coded caching utilizes pre-fetching during off-peak hours and multi-casting for delivery in order to balance the traffic load in communication networks. Several works have studied the achievable peak and average rates under different conditions: variable file lengths or popularities, variable cache sizes, decentralized networks, etc. However, very few have considered the possibility of heterogeneous user profiles, despite modern content providers are investing heavily in categorizing users according to their habits and preferences.This paper proposes three coded caching schemes with uncoded pre-fetching for scenarios where end users are grouped into classes with different file demand sets (FDS). One scheme ignores the difference between the classes, another ignores the intersection between them and the third decouples the delivery of files common to all FDS from those unique to a single class. The transmission rates of the three schemes are compared with a lower bound to evaluate their gap to optimality, and with each other to show that each scheme can outperform the other two when certain conditions are met.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.