Abstract. In visual navigation tasks, a lack of the computational resources is one of the main limitations of micro robotic platforms to be deployed in autonomous missions. It is because the most of nowadays techniques of visual navigation relies on a detection of salient points that is computationally very demanding. In this paper, an FPGA assisted acceleration of image processing is considered to overcome limitations of computational resources available on-board and to enable high processing speeds while it may lower the power consumption of the system. The paper reports on performance evaluation of the CPU-based and FPGA-based implementations of a visual teach-and-repeat navigation system based on detection and tracking of the FAST image salient points. The results indicate that even a computationally efficient FAST algorithm can benefit from a parallel (low-cost) FPGA-based implementation that has a competitive processing time but more importantly it is a more power efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.