Evidence is provided of the successful application of a single atmospheric model code at time scales ranging from shortrange weather forecasting through to projections of future climate change, and at spatial scales that vary from relatively low-resolution global simulations, to ultra-high resolution simulations at the micro-scale. The model used for these experiments is a variable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM). It is shown that CCAM may be used to obtain plausible projections of future climate change, as well as skilful forecasts at the seasonal and short-range time scales, over the Southern African region. The model is additionally applied for extended simulations of present-day climate at spatial scales ranging from global simulations at relatively low horizontal resolution, to the micro-scale at ultra-high (1 km) resolution. Applying the atmospheric model at the shorter time scales provides the opportunity to test its physical parameterisation schemes and its response to fundamental forcing mechanisms (e.g. ENSO). The existing skill levels at the shorter time scales enhance the confidence in the model projections of future climate change, whilst the related verification studies indicate opportunities for future model improvement.
Drought is one of the most hazardous natural disasters in terms of the number of people directly affected. An important characteristic of drought is the prolonged absence of rainfall relative to the long-term average. The intrinsic persistence of drought conditions continuing from one month to the next can be utilized for drought monitoring and early warning systems. This study sought to better understand drought probabilities and baselines for two agriculturally important rainfall regions in the Western Cape, South Africa – one with a distinct rainfall season and one which receives year-round rainfall. The drought indices, Standardised Precipitation and Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI), were assessed to obtain predictive information and establish a set of baseline probabilities for drought. Two sets of synthetic time-series data were used (one where seasonality was retained and one where seasonality was removed), along with observed data of monthly rainfall and minimum and maximum temperature. Based on the inherent persistence characteristics, autocorrelation was used to obtain a probability density function of the future state of the various SPI start and lead times. Optimal persistence was also established. The validity of the methodology was then examined by application to the recent Cape Town drought (2015–2018). Results showed potential for this methodology to be applied in drought early warning systems and decision support tools for the province.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.