This method was found to be acceptable for children, and healthy and asthmatic individuals were distinguished on the basis of eight VOCs at elevated levels in the breath of asthmatic children.
Aim: Breath analyses have potential to detect early signs of disease onset. Ambient ionization allows direct combination of breath gases with MS for fast, on-line analysis. Portable MS systems would facilitate field/clinic-based breath analyses. Results & methodology: Volunteers ingested peppermint oil capsules and exhaled volatile compounds were monitored over 10 h using a compact mass spectrometer. A rise and fall in exhaled menthone was observed, peaking at 60–120 min. Real-time analysis showed a gradual rise in exhaled menthone postingestion. Sensitivity was comparable to established methods, with detection in the parts per trillion range. Conclusion: Breath volatiles were readily analyzed on a portable mass spectrometer through a simple inlet modification. Induced changes in exhaled profiles were detectable with high sensitivity and measurable in real-time.
This approach facilitated more efficient data modeling and a case study from a 22-participant (10 male, 12 female) stress-intervention experiment. Principal component analysis of data registered by retention indexing did not classify successfully stressed from unstressed states. By contrast, adoption of a breath matrix approach enabled 95% separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.