This paper describes an innovative, three-day, turbomachinery research project for Japanese and British high-school students. The project is structured using modern teaching theories that encourage student curiosity and creativity. The experience develops teamwork and communication and helps to break down the cultural and linguistic barriers between students from different countries and backgrounds. The approach provides a framework for other hands-on research projects that aim to inspire young students to undertake a career in engineering. The project is part of the Clifton Scientific Trust's annual UK–Japan Young Scientist Workshop Programme. This work focuses on compressor design for jet engines and gas turbines. It includes lectures introducing students to turbomachinery concepts, a computational design study of a compressor blade section, experimental tests with a low-speed cascade, and tutorials in data analysis and aerodynamic theory. The project also makes use of 3D printing technology, so that students go through the full engineering design process, from theory, through design, to practical experimental testing. Alongside the academic aims, students learn what it is like to study engineering at university, discover how to work effectively in a multinational team, and experience a real engineering problem. Despite a lack of background in fluid dynamics and the limited time available, the lab work and end-of-project presentation show how far young students can be stretched when they are motivated by an interesting problem.
This paper describes an innovative, three-day, turbomachinery research project for Japanese and British high-school students. The project is structured using modern teaching theories which encourage student curiosity and creativity. The experience develops team-work and communication, and helps to break-down cultural and linguistic barriers between students from different countries and backgrounds. The approach provides a framework for other hands-on research projects which aim to inspire young students to undertake a career in engineering. The project is part of the Clifton Scientific Trust’s annual UK-Japan Young Scientist Workshop Programme. The work focuses on compressor design for jet engines and gas turbines. It includes lectures introducing students to turbomachinery concepts, a computational design study of a compressor blade section, experimental tests with a low-speed cascade and tutorials in data analysis and aerodynamic theory. The project also makes use of 3D printing technology, so that students go through the full engineering design process, from theory, through design, to practical experimental testing. Alongside the academic aims, students learn what it is like to study engineering at university, discover how to work effectively in a multinational team, and experience a real engineering problem. Despite a lack of background in fluid dynamics and the limited time available, the lab work and end of project presentation show how far young students can be stretched when they are motivated by an interesting problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.