Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. We consider a portfolio optimization problem in a Black-Scholes model with n stocks, in which an investor faces both fixed and proportional transaction costs. The performance of an investment strategy is measured by the average return of the corresponding portfolio over an infinite time horizon. At first, we derive a representation of the portfolio value process, which only depends on the relative fractions of the total portfolio value that the investor holds in the different stocks. This representation allows us to consider these so-called risky fractions as the decision variables of the investor. We show a certain kind of stationarity (Harris recurrence) for a quite flexible class of strategies (constant boundary strategies). Then, using renewal theoretic methods, we are able to describe the asymptotic return by the behaviour of the risky fractions in a "typical" period between two trades. Our results generalize those of [4], who considered a financial market model with one bond and one stock, to a market with a finite number n>1 of stocks. Terms of use: Documents inKeywords: Portfolio theory, transaction costs, Harris recurrence, renewal theory JEL classification: G11, C61 Claas Prelle AbstractWe consider a portfolio optimization problem in a Black-Scholes model with n stocks, in which an investor faces both fixed and proportional transaction costs. The performance of an investment strategy is measured by the average return of the corresponding portfolio over an infinite time horizon. At first, we derive a representation of the portfolio value process, whhich only depends on the relative fractions of the total portfolio value that the investor holds in the different stocks. This representation allows us to consider these so-called risky fractions as the decision variables of the investor. We show a certain kind of stationarity (Harris recurrence) for a quite flexible class of strategies (constant boundary strategies). Then, using renewal theoretic methods, we are able to describe the asymptotic return by the behaviour of the risky fractions in a "typical" period between two trades. Our results generalize those of [4], who considered a financial market model with one bond and one stock, to a market with a finite number n > 1 of stocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.