We review work on In2O3:Sn films prepared by reactive e-beam evaporation of In2O3 with up to 9 mol % SnO2 onto heated glass. These films have excellent spectrally selective properties when the deposition rate is ∼0.2 nm/s, the substrate temperature is ≳150 °C, and the oxygen pressure is ∼5×10−4 Torr. Optimized coatings have crystallite dimensions ≳50 nm and a C-type rare-earth oxide structure. We cover electromagnetic properties as recorded by spectrophotometry in the 0.2–50-μm range, by X-band microwave reflectance, and by dc electrical measurements. Hall-effect data are included. An increase of the Sn content is shown to have several important effects: the semiconductor band gap is shifted towards the ultraviolet, the luminous transmittance remains high, the infrared reflectance increases to a high value beyond a certain wavelength which shifts towards the visible, phonon-induced infrared absorption bands vanish, the microwave reflectance goes up, and the dc resisitivity drops to ∼2×10−4 Ω cm. The corresponding mobility is ∼30 cm2/V s. The complex dielectric function ε is reported. These data were obtained from carefully selected combinations of spectrophotometric transmittance and reflectance data. It is found that ε can be reconciled with the Drude theory only by assuming a strongly frequency-dependent relaxation energy between the plasma energy and the band gap. We review a recently formulated quantitative theoretical model for the optical properties which explicitly includes the additive contributions to ε from valence electrons, free electrons, and phonons. The theory embodies an effective-mass model for n-doped semiconductors well above the Mott critical density. Because of the high doping, the Sn impurities are singly ionized and the associated electrons occupy the bottom of the conduction band in the form of an electron gas. The Sn ions behave approximately as point scatterers, which is consistent with pseudopotential arguments. Screening of the ions is described by the random phase approximation. This latter theory works well as a consequence of the small effective electron radii. Exchange and correlation in the electron gas are represented by the Hubbard and Singwi–Sjölander schemes. Phonon effects are included by three empirically determined damped Lorentz oscillators. Free-electron properties are found to govern the optical performance in the main spectral range. An analysis of the complex dynamic resistivity (directly related to ε) shows unambiguously that Sn ions are the most important scatterers, although grain-boundary scattering can play some role in the midvisible range. As a result of this analysis one concludes that the optical properties of the best films approach the theoretical limit. Band-gap shifts can be understood as the net result of two competing mechanisms: a widening due to the Burstein–Moss effect, and a narrowing due to electron-electron and electron-ion scattering. The transition width—including an Urbach tail—seems to be consistent with these notions. Window applications are treated theoretically from detailed computations of integrated luminous, solar, and thermal properties. It is found that In2O3:Sn films on glass can yield∼78% normal solar transmittance and ∼20% hemispherical thermal emittance. Substrate emission is found to be insignificant. Antireflection with evaporated MgF2 or high-rate sputtered aluminum oxyfluoride can give ∼95% normal luminous transmittance, ∼5% normal luminous reflectance, little perceived color and little increase in emittance. A color purity <1% in normal transmission and <10% in normal reflection is achievable for a daylight illuminant within extended ranges of film thickness.
In this paper we present a novel and versatile technique for the production of ultrafine metal particles by evaporation from a temperature-regulated oven containing a reduced atmosphere of an inert gas. An extensive investigation of particles of oxidized AI, with diameters of 3 to 6 nm, has been performed. We have also studied ultrafine particles of Mg, Zn, and Sn produced in the same manner. A supplementing investigation has been carried out for particles of Cr, Fe, Co, Ni, Cu, and Ga, as well as larger Al particles, produced by "conventional" inert-gas evaporation from a resistive filament. Diameter as a function of evaporation rate, inert-gas pressure, and the kind of inert gas are reported. Crystalline particles smaller than 20 nm look almost spherical in the electron microscope, while larger ones often display pronounced crystal habit. Size distributions have been investigated in detail, and consistently the logarithm of the particle diameter has a Gaussian distribution to a high precision for the smallest sizes, whereas larger particles deviate from such a simple behavior. A statistical growth model, based on the Central Limit Theorem, has been formulated for liquid-like coalescence of particles; this theory accounts satisfactorily for all our data, as well as for most size distributions published in the literature. Applications of the model to colloids, discontinuous films, and supported catalysts are discussed. By comparing size distributions for particles produced by a variety of techniques we found a number of empirical rules for the width of the distributions, as defined by a (geometric) standard deviation (J". For crystalline inert-gasevaporated particles we obtained consistently 1.36 ~ (J" ~ 1.60; for coalescing islands in discontinuous films we found 1.22 ~ (J" ~ 1.34; and similar rules are applicable to colloids, supported catalysts, and to ultrafine droplets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.