Recent phylogenetic studies have revealed the major role played by the uplift of the Andes in the extraordinary diversification of the Neotropical flora. These studies, however, have typically considered the Andean uplift as a single, time-limited event fostering the evolution of highland elements. This contrasts with geological reconstructions indicating that the uplift occurred in discrete periods from west to east and that it affected different regions at different times. We introduce an approach for integrating Andean tectonics with biogeographic reconstructions of Neotropical plants, using the coffee family (Rubiaceae) as a model group. The distribution of this family spans highland and montane habitats as well as tropical lowlands of Central and South America, thus offering a unique opportunity to study the influence of the Andean uplift on the entire Neotropical flora. Our results suggest that the Rubiaceae originated in the Paleotropics and used the boreotropical connection to reach South America. The biogeographic patterns found corroborate the existence of a long-lasting dispersal barrier between the Northern and Central Andes, the ''Western Andean Portal.'' The uplift of the Eastern Cordillera ended this barrier, allowing dispersal of boreotropical lineages to the South, but gave rise to a huge wetland system (''Lake Pebas'') in western Amazonia that prevented in situ speciation and floristic dispersal between the Andes and Amazonia for at least 6 million years. Here, we provide evidence of these events in plants.biogeography ͉ Neotropical biodiversity ͉ Rubiaceae
AimMassive digitalization of natural history collections is now leading to a steep accumulation of publicly available species distribution data. However, taxonomic errors and geographical uncertainty of species occurrence records are now acknowledged by the scientific community – putting into question to what extent such data can be used to unveil correct patterns of biodiversity and distribution. We explore this question through quantitative and qualitative analyses of uncleaned versus manually verified datasets of species distribution records across different spatial scales.LocationThe American tropics.MethodsAs test case we used the plant tribe Cinchoneae (Rubiaceae). We compiled four datasets of species occurrences: one created manually and verified through classical taxonomic work, and the rest derived from GBIF under different cleaning and filling schemes. We used new bioinformatic tools to code species into grids, ecoregions, and biomes following WWF's classification. We analysed species richness and altitudinal ranges of the species.ResultsAltitudinal ranges for species and genera were correctly inferred even without manual data cleaning and filling. However, erroneous records affected spatial patterns of species richness. They led to an overestimation of species richness in certain areas outside the centres of diversity in the clade. The location of many of these areas comprised the geographical midpoint of countries and political subdivisions, assigned long after the specimens had been collected.Main conclusionOpen databases and integrative bioinformatic tools allow a rapid approximation of large‐scale patterns of biodiversity across space and altitudinal ranges. We found that geographic inaccuracy affects diversity patterns more than taxonomic uncertainties, often leading to false positives, i.e. overestimating species richness in relatively species poor regions. Public databases for species distribution are valuable and should be more explored, but under scrutiny and validation by taxonomic experts. We suggest that database managers implement easy ways of community feedback on data quality.
In its current circumscription, the herbaceous tribe Spermacoceae s.l. (Rubiaceae, Rubioideae) unites the former tribes Spermacoceae s. str., Manettieae, and the Hedyotis-Oldenlandia group. Within Spermacoceae, and particularly within the Hedyotis-Oldenlandia group, the generic delimitations are problematic. Up until now, molecular studies have focused on specific taxonomic problems within the tribe. This study is the first to address phylogenetic relationships within Spermacoceae from a tribal perspective. Sequences of three plastid markers (atpB-rbcL, rps16, and trnL-trnF) were analyzed separately as well as combined using parsimony and Bayesian approaches. Our results support the expanded tribe Spermacoceae as monophyletic. The former tribe Spermacoceae s. str. forms a monophyletic clade nested within the Hedyotis-Oldenlandia group. Several genera formerly recognized within the Hedyotis-Oldenlandia group are supported as monophyletic (Amphiasma Bremek., Arcytophyllum Willd. ex Schult. & Schult. f., Dentella J. R. Forst. & G. Forst., Kadua Cham. & Schltdl., and Phylohydrax Puff), while others appear to be paraphyletic (e.g., Agathisanthemum Klotzsch), biphyletic (Kohautia Cham. & Schltdl.), or polyphyletic (Hedyotis L. and Oldenlandia L. sensu Bremekamp). Morphological investigations of the taxa are ongoing in order to find support for the many new clades and relationships detected. This study provides a phylogenetic hypothesis with broad sampling across the major lineages of Spermacoceae that can be used to guide future species-level and generic studies.
A diagnosis and delimitation of the tribe Condamineeae is presented, with taxonomic proposals to synonymize Tresanthera and to transfer several species of Bathysa as well as Phitopis to a resurrected Schizocalyx.
A phylogenetic approach was taken to investigate the evolutionary history of seed appendages in the plant family Polygalaceae (Fabales) and determine which factors might be associated with evolution of elaiosomes through comparisons to abiotic (climate) and biotic (ant species number and abundance) timelines. Molecular datasets from three plastid regions representing 160 species were used to reconstruct a phylogenetic tree of the order Fabales, focusing on Polygalaceae. Bayesian dating methods were used to estimate the age of the appearance of ant-dispersed elaiosomes in Polygalaceae, shown by likelihood optimizations to have a single origin in the family. Topology-based tests indicated a diversification rate shift associated with appearance of caruncular elaiosomes. We show that evolution of the caruncular elaiosome type currently associated with ant dispersal occurred 54.0-50.5 million year ago. This is long after an estimated increase in ant lineages in the Late Cretaceous based on molecular studies, but broadly concomitant with increasing global temperatures culminating in the Late Paleocene-Early Eocene thermal maxima. These results suggest that although most major ant clades were present when elaiosomes appeared, the environmental significance of elaiosomes may have been an important factor in success of elaiosome-bearing lineages. Ecological abundance of ants is perhaps more important than lineage numbers in determining significance of ant dispersal. Thus, our observation that elaiosomes predate increased ecological abundance of ants inferred from amber deposits could be indicative of an initial abiotic environmental function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.