Bright-red colors in vertebrates are commonly involved in sexual, social, and interspecific signaling [1-8] and are largely produced by ketocarotenoid pigments. In land birds, ketocarotenoids such as astaxanthin are usually metabolically derived via ketolation of dietary yellow carotenoids [9, 10]. However, the molecular basis of this gene-environment mechanism has remained obscure. Here we use the yellowbeak mutation in the zebra finch (Taeniopygia guttata) to investigate the genetic basis of red coloration. Wild-type ketocarotenoids were absent in the beak and tarsus of yellowbeak birds. The yellowbeak mutation mapped to chromosome 8, close to a cluster of cytochrome P450 loci (CYP2J2-like) that are candidates for carotenoid ketolases. The wild-type zebra finch genome was found to have three intact genes in this cluster: CYP2J19A, CYP2J19B, and CYP2J40. In yellowbeak, there are multiple mutations: loss of a complete CYP2J19 gene, a modified remaining CYP2J19 gene (CYP2J19(yb)), and a non-synonymous SNP in CYP2J40. In wild-type birds, CYP2J19 loci are expressed in ketocarotenoid-containing tissues: CYP2J19A only in the retina and CYP2J19B in the beak and tarsus and to a variable extent in the retina. In contrast, expression of CYP2J19(yb) is barely detectable in the beak of yellowbeak birds. CYP2J40 has broad tissue expression and shows no differences between wild-type and yellowbeak. Our results indicate that CYP2J19 genes are strong candidates for the carotenoid ketolase and imply that ketolation occurs in the integument in zebra finches. Since cytochrome P450 enzymes include key detoxification enzymes, our results raise the intriguing possibility that red coloration may be an honest signal of detoxification ability.
Supplementary information: 4 tables, 6 figuresSupplementary materials: Two Excel files for GWAS, eQTL and eigenGWAS, and summary of gene expression analysis. One .mpg file that contains videos of motile sperm of alternative karyomorphs. 2Sperm competition is an important selective force in many organisms. As a result, sperm have evolved to be among the most diverse cells in the animal kingdom. However, the relationship between sperm morphology, sperm motility and fertilisation success is only partially understood. The extent to which between-male variation is heritable is largely unknown, and remarkably few studies have investigated the genetic architecture of sperm traits, especially sperm morphology. Here we use high-density genotyping and gene expression profiling to explore the considerable sperm trait variation that exists in the zebra finch Taeniopygia guttata.We show that nearly all of the genetic variation in sperm morphology is caused by an inversion polymorphism on the Z chromosome acting as a 'supergene'. These results provide a striking example of two evolutionary genetic predictions. First, that in species where females are the heterogametic sex, genetic variation affecting sexually dimorphic traits will accumulate on the Z chromosome. Second, recombination suppression at the inversion allows beneficial dominant alleles to become fixed on whichever haplotype they first arise, without being exchanged onto other haplotypes. Finally, we show that the inversion polymorphism will be stably maintained by heterozygote advantage, because heterozygous males have the fastest and most successful sperm.Sperm are perhaps the most diverse cells in the animal kingdom, with enormous morphological variation between taxa, between species, between males and within an ejaculate 1 .Considerable interest in sperm diversity has arisen following the realisation that sperm competition (post-copulatory sexual selection) is a powerful selective force in many organisms 2 , and that sperm morphology has co-evolved with female reproductive tract morphology 3 . The zebra finch is a model species for studies of sperm biology. Sperm length is repeatable within an ejaculate, yet variable between different males; most morphological traits (head, midpiece, tail and total length) are highly heritable 4 . Furthermore, there is a documented phenotypic and genetic correlation between morphology and sperm swimming velocity ('motility') 5 . In artificially selected lines, pronounced differences in total sperm length are apparent after just three generations of divergent selection, and males with long sperm have the greatest probability of fertilisation success in sperm competition 3 trials 6 . Additionally, the zebra finch has its genome sequenced, assembled and annotated 7 , and so the toolkit to explore the genetics of phenotypic variation is available.In this study we set out to understand the genetic architecture of sperm morphology and motility in the zebra finch. Our aim was to combine genome wide association mapping with analyses of ...
Sperm competition, in which the ejaculates of multiple males compete to fertilize a female's ova, results in strong selection on sperm traits. Although sperm size and swimming velocity are known to independently affect fertilization success in certain species, exploring the relationship between sperm length, swimming velocity and fertilization success still remains a challenge. Here, we use the zebra finch (Taeniopygia guttata), where sperm size influences sperm swimming velocity, to determine the effect of sperm total length on fertilization success. Sperm competition experiments, in which pairs of males whose sperm differed only in length and swimming speed, revealed that males producing long sperm were more successful in terms of (i) the number of sperm reaching the ova and (ii) fertilizing those ova. Our results reveal that although sperm length is the main factor determining the outcome of sperm competition, complex interactions between male and female reproductive traits may also be important. The mechanisms underlying these interactions are poorly understood, but we suggest that differences in sperm storage and utilization by females may contribute to the outcome of sperm competition.
The relationship between sperm energetics and sperm function is poorly known, but is central to our understanding of the evolution of sperm traits. The aim of this study was to examine how sperm morphology and ATP content affect sperm swimming velocity in the zebra finch Taeniopygia guttata. We exploited the high inter-male variation in this species and created extra experimental power by increasing the number of individuals with very long or short sperm through artificial selection. We found a pronounced quadratic relationship between total sperm length and swimming velocity, with velocity increasing with length up to a point, but declining in the very longest sperm. We also found an unexpected negative association between midpiece length and ATP content: sperm with a short midpiece generally contained the highest concentration of ATP. Low intracellular ATP is therefore unlikely to explain reduced swimming velocity among the very longest sperm (which tend to have a shorter midpiece).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.