On July 24, 2020, a workshop sponsored by the National Brain Tumor Society was held on innovating brain tumor clinical trials based on lessons learned from the COVID-19 experience. Various stakeholders from the brain tumor community participated including the US Food and Drug Administration (FDA), academic and community clinicians, researchers, industry, clinical research organizations, patients and patient advocates, and representatives from the Society for Neuro-Oncology and the National Cancer Institute. This report summarizes the workshop and proposes ways to incorporate lessons learned from COVID-19 to brain tumor clinical trials including the increased use of telemedicine and decentralized trial models as opportunities for practical innovation with potential long-term impact on clinical trial design and implementation.
Imaging response assessment is a cornerstone of patient care and drug development in oncology. Clinicians/clinical researchers rely on tumor imaging to estimate impact of new treatments, and guide decision making for patients and candidate therapies. This is important in brain cancer, where associations between tumor size/growth and emerging neurological deficits is strong. Accurately measuring impact of a new therapy on tumor growth early in clinical development, where patient numbers are small, would be valuable for decision making regarding late-stage development activation. Current attempts to measure impact of a new therapy have limited influence on clinical development, as determination of progression, stability or response does not currently account for individual tumor growth kinetics prior to the initiation of experimental therapies. Therefore, we posit that imaging-based response assessment, often used as a tool for estimating clinical effect, is incomplete as it does not adequately account for growth trajectories or biological characteristics of tumors prior to the introduction of an investigational agent. Here, we propose modifications to the existing framework for evaluating imaging assessment in primary brain tumors that will provide a more reliable understanding of treatment effects. Measuring tumor growth trajectories prior to a given intervention may allow us to more confidently conclude whether there is an anti-tumor effect. This updated approach to imaging-based tumor response assessment is intended to improve our ability to select candidate therapies for later stage development, including those that may not meet currently sought thresholds for “response” and ultimately lead to identification of effective treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.