Histone deacetylases (HDACs), histone acetyltransferases (HATs), and the molecular chaperone heat shock protein 90 (HSP90) are attractive anticancer drug targets. Highthroughput screening plays a pivotal role in modern molecular mechanism-based drug discovery. Cell-based screens are particularly useful in that they identify compounds that are permeable and active against the selected target or pathway in a cellular context. We have previously developed time-resolved fluorescence cell immunosorbent assays (TRF-Cellisas) for compound screening and pharmacodynamic studies. These assays use a primary antibody to the single protein of interest and a matched secondary immunoglobulin labeled with an europium chelate (Eu). The availability of species-specific secondary antibodies labeled with different lanthanide chelates provides the potential for multiplexing this type of assay. The approach has been applied to the development of a 384-well duplexed cell-based screen to simultaneously detect compounds that induce the co-chaperone HSP70 as a molecular marker of potential inhibitors of HSP90 together with those that modulate cellular acetylation (i.e., potential inhibitors of histone deacetylase or histone acetyltransferase activity). The duplexed assay proved reliable in high-throughput format and f64,000 compounds were screened. Following evaluation in secondary assays, 3 of 13 hits from the HSP70 arm were confirmed. Two of these directly inhibited the intrinsic ATPase activity of HSP90 whereas the third seems to have a different mechanism of action. In the acetylation arm, two compounds increased cellular acetylation, one of which inhibited histone deacetylase activity. A third compound decreased cellular histone acetylation, potentially through a novel mechanism of action. [Mol Cancer Ther 2007;6(3):1112 -22]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.