CD20 is a 33-37 kDa, non-glycosylated phosphoprotein expressed on the surface of almost all normal and malignant B cells. It is also the target for rituximab, the most effective anti-cancer monoclonal antibody developed to date. Rituximab has now been given to over 300,000 lymphoma patients in the last decade and interestingly is now being explored for use in other disorders, such as autoimmune conditions including rheumatoid arthritis and systemic lupus erythematosus. Despite the success in immunotherapy, knowledge about the biology of CD20 is still relatively scarce, partly because it has no known natural ligand and CD20 knockout mice display an almost normal phenotype. However, interesting insight has come from work showing that CD20 is resident in lipid raft domains of the plasma membrane where it probably functions as a store-operated calcium channel following ligation of the B cell receptor for antigen. In the current review, these and data relating to its activity as a therapeutic target will be discussed in depth. It is clear that a greater understanding of CD20 biology and the effector mechanisms, such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity and growth regulation, which operate with anti-CD20 mAb in vivo will allow more efficient exploitation of CD20 as a therapeutic target.
mAbs are becoming increasingly utilized in the treatment of lymphoid disorders. Although Fc-FcγR interactions are thought to account for much of their therapeutic effect, this does not explain why certain mAb specificities are more potent than others. An additional effector mechanism underlying the action of some mAbs is the direct induction of cell death. Previously, we demonstrated that certain CD20-specific mAbs (which we termed type II mAbs) evoke a nonapoptotic mode of cell death that appears to be linked with the induction of homotypic adhesion. Here, we reveal that peripheral relocalization of actin is critical for the adhesion and cell death induced by both the type II CD20-specific mAb tositumomab and an HLA-DRspecific mAb in both human lymphoma cell lines and primary chronic lymphocytic leukemia cells. The cell death elicited was rapid, nonapoptotic, nonautophagic, and dependent on the integrity of plasma membrane cholesterol and activation of the V-type ATPase. This cytoplasmic cell death involved lysosomes, which swelled and then dispersed their contents, including cathepsin B, into the cytoplasm and surrounding environment. The resulting loss of plasma membrane integrity occurred independently of caspases and was not controlled by Bcl-2. These experiments provide what we believe to be new insights into the mechanisms by which 2 clinically relevant mAbs elicit cell death and show that this homotypic adhesion-related cell death occurs through a lysosome-dependent pathway.Introduction mAbs are becoming increasingly utilized in the treatment of lymphoid disorders (1, 2). In particular, mAb directed to cell-surface antigens on malignant B cells has proven the most clinically effective, with the anti-CD20 mAb, rituximab, being the first to be approved by the US FDA for the treatment of cancer. Rituximab has substantially improved outcome for patients with many different types of non-Hodgkin lymphoma and has now been administered to over 1 million patients in the decade since its approval. Despite such success, treatment is not curative and there is intense preclinical and clinical investigation of many other engineered mAbs directed to both CD20 and a host of other cell-surface antigens (2).
The anti-CD20 monoclonal antibody (mAb) rituximab is now routinely used for the treatment of non-Hodgkins lymphoma and is being examined in a wide range of other B-cell disorders, such as rheumatoid arthritis. Despite intensive study, the mechanism of action still remains uncertain. In the current study, anti-CD20 mAb-induced calcium signaling was investigated. Previously, we grouped anti-CD20 mAbs into Type I (rituximab-like) and Type II (B1-like) based upon various characteristics such as their ability to induce complement activation and redistribute CD20 into detergent-insoluble membrane domains. Here we show that only Type I mAbs are capable of inducing a calcium flux in B cells and that this is tightly correlated with the expression of the B-cell antigen receptor (BCR). Inhibitor analysis revealed that the signaling cascade employed by CD20 was strikingly similar to that utilized by the BCR, with inhibitors of Syk, Src, and PI3K, but not EGTA, p38, or ERK1/2, completely ablating calcium flux. Furthermore, binding of Type I but not Type II mAbs caused direct association of CD20 with the BCR as measured by FRET and resulted in the phosphorylation of BCRspecific adaptor proteins BLNK and SLP-76. Crucially, variant Ramos cells lacking BCR expression but with unchanged CD20 expression were completely unable to induce calcium flux following ligation of CD20. Collectively, these data indicate that CD20 induces cytosolic calcium flux through its ability to associate with and "hijack" the signaling potential of the BCR.CD20 is a 33-37-kDa, non-glycosylated phosphoprotein expressed on the surface of normal B lymphocytes and ϳ95% of malignant B cells (1,2). This fact has led to CD20-directed immunotherapy, which has been successfully employed in the treatment of over one million patients world-wide with diseases such as non-Hodgkins lymphoma and various autoimmune disorders (3-8). Despite such clinical success and recent progress, we still remain largely ignorant of how anti-CD20 monoclonal antibody (mAb) 3 operates in vivo. Three main effector mechanisms are available to mAbs to evoke tumor regression: Complement-and antibody-dependent cellular cytotoxicity (CDC and ADCC, respectively) and direct cytotoxic signaling (Refs. 5, 9 -14 and reviewed in Ref. 15). The relative contribution of these mechanisms to therapeutic activity remains a controversial issue (15, 16). All anti-CD20 mAbs of the appropriate isotype have the ability to promote efficient ADCC with little evidence that any one mAb is better or worse than any other (17). However, in contrast, they can be separated into two distinct groups: Type I (rituximab, 2F2) and Type II (B1, 11B8), based upon their ability to redistribute CD20 into detergent-insoluble plasma membrane domains, to induce homotypic cellular adhesion, and to evoke CDC (10, 18). Furthermore, it appears that such differences also translate into their effects in vivo with Type I mAb, such as rituximab, being more dependent on CDC for their therapeutic activity (19). Here we have extended the...
We demonstrate a compact, low cost and practical fluorescence detection system for lab-on-a-chip applications. The system comprises a commercially available InGaN light emitting diode (501 nm) as light source, an organic or silicon photodiode detector, absorptive dye coated colour filters and linear and reflective polarisers. An injection moulded polystyrene microfluidic chip is used as the platform for fluorescence immunoassays for cardiac markers myoglobin and CK-MB. The optical limit of detection (LOD) is measured using a TransFluoSphere® suspension at 5.6 × 10(4) beads µl(-1) which can be equated to ∼3 nM fluorescein equivalent concentration. The LOD for the human plasma immunoassays is measured as 1.5 ng ml(-1) for both myoglobin and CK-MB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.