Viral infections are a serious health challenge, and the COVID-19 pandemic has increased the demand for antiviral measures and treatments for clean surfaces, especially in public places. Here, we review a range of natural and synthetic surface materials and coatings with antiviral properties, including metals, polymers and biopolymers, graphene and antimicrobial peptides, and their underpinning antiviral mechanisms. We also discuss the physico-chemical properties of surfaces which influence virus attachment and persistence on surfaces. Finally, an overview is given of the current practices and applications of antiviral and virucidal materials and coatings in consumer products, personal protective equipment, healthcare and public settings.
Metallic nanoparticles have unique antimicrobial properties that make them suitable for use within medical and pharmaceutical devices to prevent the spread of infection in healthcare. The use of nanoparticles in healthcare is on the increase with silver being used in many devices. However, not all metallic nanoparticles can target and kill all disease-causing bacteria. To overcome this, a combination of several different metallic nanoparticles were used in this study to compare effects of multiple metallic nanoparticles when in combination than when used singly, as single elemental nanoparticles (SENPs), against two common hospital acquired pathogens (Staphylococcus aureus and Pseudomonas. aeruginosa). Flow cytometry LIVE/DEAD assay was used to determine rates of cell death within a bacterial population when exposed to the nanoparticles. Results were analysed using linear models to compare effectiveness of three different metallic nanoparticles, tungsten carbide (WC), silver (Ag) and copper (Cu), in combination and separately. Results show that when the nanoparticles are placed in combination (NPCs), antimicrobial effects significantly increase than when compared with SENPs (P < 0.01). This study demonstrates that certain metallic nanoparticles can be used in combination to improve the antimicrobial efficiency in destroying morphologically distinct pathogens within the healthcare and pharmaceutical industry.
SUMMARY1. Pesticides can have strong deleterious impacts in fresh waters, but understanding how these effects cascade through natural ecosystems, from microbes to apex predators, is limited because research that spans multiple levels of biological organisation is rare. 2. We report how an accidental insecticide spill altered the structure and functioning of a river across levels ranging from genes to ecosystems. We quantified the impacts on assemblages of microbes, diatoms, macroinvertebrates and fish and measured leaf-litter decomposition rates and microbial functional potential at upstream control and downstream impacted sites 2 months after the spill. 3. Both direct and indirect impacts were evident across multiple levels of organisation and taxa, from the base of the food web to higher trophic levels. At the molecular level, differences in functional gene abundance within the impacted sites reflected a combination of direct and indirect effects of the pesticide, via elevated abundances of microbial populations capable of using chlorpyrifos as a resource (i.e. direct effect) and oxidising ammonia released by decaying macroinvertebrate carcasses (i.e. indirect effect). 4. At the base of the food chains, diatom taxa found only in the impacted sites were an order-ofmagnitude larger in cell size than the largest comparable taxa in control communities, following the near extirpation of their consumers. Population biomass of the key detritivore Gammarus pulex was markedly lower, as was the rate of litter decomposition in the impacted sites. This was partially compensated for, however, by elevated microbial breakdown, suggesting another indirect food-web effect of the toxic spill. 5. Although many species exhibited population crashes or local extirpation, total macroinvertebrate biomass and abundance were largely unaffected due to a compensatory elevation in small tolerant taxa such as oligochaetes, and/or taxa which were in their adult aerial life stage at the time of the spill (e.g. chironomids) and thus avoided contact with the polluted waters and were able to repopulate the river quickly. Mass-abundance scaling of trophic links between consumers and resources revealed extensive restructuring within the food web. 6. This case study shows that pesticides can affect food-web structure and ecosystem functioning, both directly and indirectly across levels of biological organisation. It also demonstrates how an integrated assessment approach, as adopted here, can elucidate links between microbiota,
BackgroundBacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens.MethodsPlate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments.ResultsStrong antimicrobial effects of the three NPCs (AMNP0–2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification.ConclusionFlow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.