Introduction Healthcare workers exposure to antineoplastic drugs can lead to adverse health effects. Guidelines promote the safe handling of antineoplastic drugs, but no safe exposure limit was determined. Regular surface sampling contributes to ensuring workers safety. Methods A cross-sectional monitoring is conducted once a year with voluntary Canadian centers, since 2010. Twelve standardized sampling sites were sampled. Samples were analyzed by high performance mass coupled liquid chromatography. The limits of detection (in ng/cm2) were: 0.001 for cyclophosphamide and gemcitabine; 0.3 for docetaxel and ifosfamide; 0.04 for 5-fluorouracil and paclitaxel; 0.003 for irinotecan; 0.002 for methotrexate; 0.01 for vinorelbine. Results The surfaces from 109 centers were sampled between 01/01/2020–18/06/2020. Twenty-six centers delayed their participation because of the COVID-19 pandemic. 1217 samples were analyzed. Surfaces were frequently contaminated with cyclophosphamide (34% positive, 75th percentile 0.00165 ng/cm2) and gemcitabine (16% and <0.001 ng/cm2). The armrest of patient treatment chairs (84% to at least one drug), the front grille inside the biological safety cabinet (BSC) (73%) and the floor in front of the BSC (55%) were frequently contaminated. Centers that prepared ≥5000 antineoplastic drugs annually had higher concentration of cyclophosphamide on their surfaces (p < 0.0001). Contamination measured on the surfaces was reduced from 2010 to 2020. Conclusions This large-scale study showed reproducible long term follow up of the contamination of standardized sites of Canadian centers and a reduction in surface contamination from 2010 to 2020. Periodic surface sampling help centers meet their continuous improvements goals to reduce exposure as much as possible. The COVID-19 pandemic had a limited impact on the program.
Aspergillus niger is usually considered to be a low virulence fungus, not commonly reported to cause invasive infections. Invasive pulmonary aspergillosis due to Aspergillus niger was diagnosed in a 43-year-old woman following bilateral lung transplantation. Intravenous voriconazole failed to control progression of the disease. Despite salvage therapy with a combination of voriconazole and caspofungin for 23 days, the patient developed massive hemoptysis leading to death. The authors report the clinical features and treatment of this case.
Objectives To evaluate the efficacy of two decontamination protocols on cyclophosphamide surface contamination and to explore its lasting effect 30 days later. Methods All sampling sites that were systematically contaminated with cyclophosphamide in 2017–2020 were included, from a convenience sample of centers. The first decontamination protocol consisted of four steps, each with 20 mL and a Wypall® wipe: detergent, sodium hypochlorite 2%, isopropyl alcohol 70% and water. The second decontamination protocol consisted of eight steps, each with 15 mL and a Micronsolo® microfibre wipe: detergent, sodium hypochlorite 2%, isopropyl alcohol 70%, water and then a second round with each of the four products. A first sampling was done at the end of a regular working day (T0), a second immediately following decontamination (T1) and a third 30 days later (T2) after regular operations. Cyclophosphamide was quantified by ultra-performance liquid chromatography – tandem mass spectrometry (limit of detection 0.001 ng/cm2). Results Seventeen sampling sites were included: six biological safety cabinet (BSC) front grilles, eight floors in front of BSCs and three cyclophosphamide storage shelves. The second protocol was more effective; however they both failed to completely remove all cyclophosphamide traces. BSCs and floors were found to be contaminated again 30 days later, at similar concentrations than at T0. A lasting effect was observed on the cyclophosphamide storage shelves that were less prone to be contaminated again. Conclusions Periodic decontamination with many cleaning steps is necessary on all surfaces, including those less frequently contaminated. Regular surface monitoring identifies systematically contaminated areas.
Objectives Several societies have published guidelines to limit the occupational exposure of workers. Several of these guidelines recommend periodic (once or twice a year) environmental monitoring of specific sites where antineoplastic drugs are prepared and administered. However, most of the guidelines provide no guidance concerning which antineoplastic drugs should be monitored, the preferred sampling sites, appropriate test methods or limits of detection. The aim of this study was to characterize providers that quantify antineoplastic drug measured on surfaces. Methods This was a cross-sectional descriptive study. To identify service providers offering environmental monitoring tests, we searched the PubMed database and used the Google search engine. We contacted each service provider by email between June 3rd and June 15th, 2020. We specified the objective of our study and described the information needed and the variables of interest with standardized questions. Additional questions were sent by emails or via teleconferences. No statistical analyses were performed. Results We identified six providers offering services to Canadian hospitals, either based in Canada or in the United States. Five of these providers were private companies and one was a public organization. Each service provider was able to measure trace contamination of 3–17 antineoplastic drugs. Five of the providers quantified drugs using ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MSMS), which allowed for lower LODs. The sixth provider offered quantification by immunoassay, which has higher LODs, but offers near real-time results; the surface area to be sampled with this method was also smaller than with UPLC-MSMS. The services offered varied among the service providers. The information about LODs supplied by each provider was often insufficient and the units were not standardized. A cost per drug quantified could not be obtained, because of variability in the scenarios involved (e.g. drug selection to be quantified, number of samples, nondisclosure of ancillary costs). Four of the six service providers were unable to report LOQ values. Conclusions Few data are available from Canadian service providers concerning the characteristics of wipe sampling methods for antineoplastics. This study identified six north-American providers. Their characteristics were very heterogeneous. Criteria to consider when choosing a provider include the validation of their analytical method, a low limit of detection, the choice of drugs to be quantified and the sites to be sampled, obtaining details about the method and understanding its limits, and price. This should be part of a structured multidisciplinary approach in each center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.