The development of multifunctional surfaces is of general interest for the fabrication of biomedical, catalytic, microfluidic or biosensing devices. Herein, we report on the preparation of copolymer layers immobilized on gold surface and showing both free thiol and amino groups. These layers are produced by aminolysis of a thiolactone-based copolymer in the presence of a diamine, according to a one-step procedure. The free thiol and amino groups present in the modified copolymer layers can be successfully functionalized with respectively thiolated and carboxylic derivatives, in order to produce bifunctionalized surfaces. In addition, we show that the grafted thiolated derivative can be released by cleavage of the disulfide bond under mild reducing conditions. On the other hand, a side cross-linking reaction occurring during the grafting process and resulting in the formation of copolymer aggregates on the metal surface is evidenced. The methodology developed for the preparation of these bifunctionalized redox-responsive layers should be advantageously used to produce bioactive surfaces with drug loading/release properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.