Indirect transmission via a contaminated environment can occur for a number of pathogens, even those typically thought of as being directly transmitted, such as influenza virus, norovirus, bovine tuberculosis, or foot-and-mouth disease virus (FMDV). Indirect transmission facilitates spread from multiple sources beyond the infectious host, complicating the epidemiology and control of these diseases. This study carried out a series of transmission experiments to determine the dose-response relationship between environmental contamination and transmission of FMDV in cattle from measurements of viral shedding and rates of environmental contamination and survival. Seven out of ten indirect exposures resulted in successful transmission. The basic reproduction number for environmental transmission of FMDV in this experimental setting was estimated at 1.65, indicating that environmental transmission alone could sustain an outbreak. Importantly, detection of virus in the environment prior to the appearance of clinical signs in infected cattle and successful transmission from these environments highlights there is a risk of environmental transmission even before foot-and-mouth disease (FMD) is clinically apparent in cattle. Estimated viral decay rates suggest that FMDV remained viable in this environment for up to 14 days, emphasizing the requirement for stringent biosecurity procedures following outbreaks of FMD and the design of control measures that reflect the biology of a pathogen.
IMPORTANCE Effective control of a disease relies on comprehensive understanding of how transmission occurs, in order to design and apply effective control measures. Foot-and-mouth disease virus (FMDV) is primarily spread by direct contact between infected and naive individuals, although the high levels of virus shed by infected animals mean that virus can also be spread through contact with contaminated environments. Using a series of transmission experiments, we demonstrate that environmental transmission alone would be sufficient to sustain an outbreak. Key observations include that a risk of transmission exists before clinical signs of foot-and-mouth disease (FMD) are apparent in cattle and that survival of virus in the environment extends the transmission risk period. This study highlights the role a contaminated environment can play in the transmission of FMDV and presents approaches that can also be applied to study the transmission of other pathogens that are able to survive in the environment.
SummaryThe BclA protein is a major component of the outermost layer of spores of a number of bacterial species and Clostridium difficile carries three bclA genes. Using insertional mutagenesis each gene was characterized and spores devoid of these proteins had surface aberrations, reduced hydrophobicity and germinated faster than wild-type spores. Therefore the BclA proteins were likely major components of the spore surface and when absent impaired the protective shield effect of this outermost layer. Analysis of infection and colonization in mice and hamsters revealed that the 50% infectious dose (ID 50) of spores was significantly higher (2-logs) in the bclA1 − mutant compared to the isogenic wild-type control, but that levels of toxins (A and B) were indistinguishable from animals dosed with wild-type spores. bclA1 − spores germinated faster than wild-type spores yet mice were less susceptible to infection suggesting that BclA1 must play a key role in the initial (i.e. pre-spore germination) stages of infection. We also show that the ID50 was higher in mice infected with R20291, a 'hypervirulent' 027 strain, that carries a truncated BclA1 protein.
HighlightsFMDV A/ASIA/G-VII lineage has recently spread beyond the Indian sub-continent.Study evaluated the performance of a high potency polyvalent vaccine in cattle.A new vaccine strain should be developed which is tailored to the A/ASIA/G-VII lineage.
Prompt confirmation and diagnosis of disease are key factors in controlling outbreaks. The development of sampling techniques to detect FMDV RNA from the environment will extend the tool kit available for the surveillance of this pathogen. The methods presented in this article broaden surveillance opportunities using accessible techniques. Pairing these methods with existing and novel diagnostic tests will improve the capability for rapid detection of outbreaks and implementation of timely interventions to control outbreaks. In areas of endemicity, these methods can be implemented to extend surveillance beyond the investigation of clinical cases, providing additional data for the assessment of virus circulation in specific areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.