The impact of polypropylene and high-density polyethylene backbone binders on the structure of organic matrix, feedstock, and ceramic parts is investigated in terms of morphology in this paper. The miscibility of wax with polyethylene and polypropylene is investigated in the molten state via a rheological study, revealing wax full miscibility with high-density polyethylene and restricted miscibility with polypropylene. Mercury porosimetry measurements realized after wax extraction allow the characterization of wax dispersion in both neat organic blends and zirconia filled feedstocks. Miscibility differences in the molten state highly impact wax dispersion in backbone polymers after cooling: wax is preferentially located in polyethylene phase, while it is easily segregated from polypropylene phase, leading to the creation of large cracks during solvent debinding. The use of a polyethylene/polypropylene ratio higher than 70/30 hinders wax segregation and favors its homogeneous dispersion in organic binder. As zirconia is added to organic blends containing polyethylene, polypropylene, and wax, the pore size distribution created by wax extraction is shifted towards smaller pores. Above zirconia percolation at 40 vol%, the pore size distribution becomes sharp attesting of wax homogeneous dispersion. As the PP content in the organic binder decreases from 100% to 0%, the pore size distribution is reduced of 30%, leading to higher densification ability. In order to ensure a maximal densification of the final ceramic, polyethylene/polypropylene ratios with a minimum content of 70% of high-density polyethylene should be employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.