This paper is a contribution to methodological development of the formulation of lipid nanocapsules, with a special emphasis on the aptness to freeze-drying and the stability under storage.
The use of the enzyme alpha-acetolactate decarboxylase allows the acceleration of beer fermentation/maturation because it shunts diacetyl formation, whose elimination is the rate-limiting step of the process. To obtain a cost reduction by using this exogenous enzyme, we propose a new process involving recoverable encapsulated alpha-acetolactate decarboxylase. The performance of traditional and new processes was investigated by a modeling approach. A simple model, focused on alpha-acetolactate and diacetyl profiles during beer fermentation, was set up. The simulated profiles are consistent with literature data. This study shows also that encapsulated alpha-acetolactate decarboxylase allows the acceleration of beer fermentation as efficiently as free alpha-acetolactate decarboxylase. The advantage of immobilized alpha-acetolactate decarboxylase versus free enzyme is that it is recoverable and reusable, which means a process cost reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.