A cobalt-tripeptide complex (CoGGH) is developed as an electrocatalyst for the selective sixelectron, eight-proton reduction of nitrite to ammonium in aqueous buffer near neutral pH. The onset potential for nitrite reduction occurs at −0.65 V vs Ag/AgCl (1 M KCl). Controlled potential electrolysis at −0.90 V generates ammonium with a faradaic efficiency of 90 ± 3% and a turnover number of 3550 ± 420 over 5.5 h. CoGGH also catalyzes the reduction of the proposed intermediates nitric oxide and hydroxylamine to ammonium. These results reveal that a simple metallopeptide is an active functional mimic of the complex enzymes cytochrome c nitrite reductase and siroheme-containing nitrite reductase.
Ultrafast chemical reactions are difficult to simulate because they involve entangled, many-body wavefunctions whose computational complexity grows rapidly with molecular size. In photochemistry, the breakdown of the Born-Oppenheimer approximation further...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.