IFNγ is an attractive target for imaging active antitumor immunity due to its function in the T-cell signaling axis. Here, we test an IFNγ immuno-PET (immunoPET) probe for its capacity to identify adaptive immunotherapy response after HER2/neu vaccination in both spontaneous salivary and orthotopic neu mouse mammary tumors. IFNγ immunoPET detected elevated cytokine levels after vaccination, which inversely correlated with tumor growth rate, an indicator of response to therapy. In a model of induced T-cell anergy where CD8 T cells infiltrate the tumor, but upregulate PD-1, IFNγ tracer uptake was equivalent to isotype control, illustrating a lack of antitumor T-cell activity. The IFNγ immunoPET tracer detected IFNγ protein sequestered on the surface of tumor cells, likely in complex with the IFNγ receptor, which may explain imaging localization of this soluble factor Collectively, we find that the activation status of cytotoxic T cells is annotated by IFNγ immunoPET, with reduced off-target binding to secondary lymphoid tissues compared with imaging total CD3 tumor-infiltrating lymphocytes. Targeting of soluble cytokines such as IFNγ by PET imaging may provide valuable noninvasive insight into the function of immune cells This study presents a novel approach to monitor therapeutic outcomes via IFNγ-targeted positron emission tomography..
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibrotic destruction of normal lung architecture. Due to a lack of effective treatment options, new treatment approaches are needed. We previously identified transglutaminase (TG)2, a multifunctional protein expressed by human lung fibroblasts (HLFs), as a positive driver of fibrosis. TG2 catalyzes crosslinking of extracellular matrix proteins, enhances cell binding to fibronectin and integrin, and promotes fibronectin expression. We investigated whether the small electrophilic molecules 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and 15-deoxy-delta-12,14-prostaglandin J 2 (15d-PGJ 2 ) inhibit the expression and profibrotic functions of TG2. CDDO and 15d-PGJ 2 reduced expression of TG2 mRNA and protein in primary HLFs from control donors and donors with IPF. CDDO and 15d-PGJ 2 also decreased the in vitro profibrotic effector functions of HLFs including collagen gel contraction and cell migration. The decrease in TG2 expression did not occur through activation of the peroxisome proliferator activated receptor g or generation of reactive oxidative species. CDDO and 15d-PGJ 2 inhibited the extracellular signal-regulated kinase pathway, resulting in the suppression of TG2 expression. This is the first study to show that small electrophilic compounds inhibit the expression and profibrotic effector functions of TG2, a key promoter of fibrosis. These studies identify new and important antifibrotic activities of these two small molecules, which could lead to new treatments for fibrotic lung disease.
Cigarette smokers and people exposed to second-hand smoke are at an increased risk for pulmonary viral infections, and yet the mechanism responsible for this heightened susceptibility is not understood. To understand the effect of cigarette smoke on susceptibility to viral infection, we used an air-liquid interface culture system and exposed primary human small airway epithelial cells (SAEC) to whole cigarette smoke, followed by treatment with the viral mimetic polyinosinic polycytidylic acid (poly I:C) or influenza A virus (IAV). We found that prior smoke exposure strongly inhibited production of proinflammatory (interleukin-6 and interleukin-8) and antiviral [interferon-γ-induced protein 10 (IP-10) and interferons] mediators in SAECs in response to poly I:C and IAV infection. Impaired antiviral responses corresponded to increased infection with IAV. This was associated with a decrease in phosphorylation of the key antiviral transcription factor interferon response factor 3 (IRF3). Here, we found that cigarette smoke exposure inhibited activation of Toll-like receptor 3 (TLR3) by impairing TLR3 cleavage, which was required for downstream phosphorylation of IRF3 and production of IP-10. These results identify a novel mechanism by which cigarette smoke exposure impairs antiviral responses in lung epithelial cells, which may contribute to increased susceptibility to respiratory infections.
Summary The aryl hydrocarbon receptor (AhR) is a transcription factor that has been extensively studied as a regulator of toxicant metabolism. However, recent evidence indicates that the AhR also plays an important role in immunity. We hypothesized that the AhR is a novel, immune regulator of T helper type 2 (Th2) ‐mediated allergic airway disease. Here, we report that AhR‐deficient mice develop increased allergic responses to the model allergen ovalbumin (OVA), which are driven in part by increased dendritic cell (DC) functional activation. AhR knockout (AhR−/−) mice sensitized and challenged with OVA develop an increased inflammatory response in the lung compared with wild‐type controls, with greater numbers of inflammatory eosinophils and neutrophils, greater T‐cell proliferation, greater production of Th2 cytokines, and higher levels of OVA‐specific IgE and IgG1. Lung DCs from AhR−/− mice stimulated antigen‐specific proliferation and Th2 cytokine production by naive T cells in vitro. Additionally, AhR−/− DCs produced higher levels of tumour necrosis factor‐α and interleukin‐6, which promote Th2 differentiation, and expressed higher cell surface levels of stimulatory MHC Class II and CD86 molecules. Overall, loss of the AhR was associated with enhanced T‐cell activation by pulmonary DCs and heightened pro‐inflammatory allergic responses. This suggests that endogenous AhR ligands are involved in the normal regulation of Th2‐mediated immunity in the lung via a DC‐dependent mechanism. Therefore, the AhR may represent an important target for therapeutic intervention in allergic airways inflammation.
The past two decades have brought impressive advancements in immune modulation, particularly with the advent of both cancer immunotherapy and biologic therapeutics for inflammatory conditions. However, the dynamic nature of the immune response often complicates the assessment of therapeutic outcomes. Innovative imaging technologies are designed to bridge this gap and allow non-invasive visualization of immune cell presence and/or function in real time. A variety of anatomical and molecular imaging modalities have been applied for this purpose, with each option providing specific advantages and drawbacks. Anatomical methods including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound provide sharp tissue resolution, which can be further enhanced with contrast agents, including super paramagnetic ions (for MRI) or nanobubbles (for ultrasound). Conjugation of the contrast material to an antibody allows for specific targeting of a cell population or protein of interest. Protein platforms including antibodies, cytokines, and receptor ligands are also popular choices as molecular imaging agents for positron emission tomography (PET), single-photon emission computerized tomography (SPECT), scintigraphy, and optical imaging. These tracers are tagged with either a radioisotope or fluorescent molecule for detection of the target. During the design process for immune-monitoring imaging tracers, it is important to consider any potential downstream physiologic impact. Antibodies may deplete the target cell population, trigger or inhibit receptor signaling, or neutralize the normal function(s) of soluble proteins. Alternatively, the use of cytokines or other ligands as tracers may stimulate their respective signaling pathways, even in low concentrations. As in vivo immune imaging is still in its infancy, this review aims to describe the modalities and immunologic targets that have thus far been explored, with the goal of promoting and guiding the future development and application of novel imaging technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.