Recently, the genes of cytochrome ba3 from thermus thermophilus [Keightley, J.A., et al. (1995) J. Biol. Chem. 270, 20345-20358], a homolog of the heme-copper oxidase family, have been cloned. We report here expression of a truncated gene, encoding the copper A (CuA) domain of cytochrome ba3, that is regulated by a T7 RNA polymerase promoter in Escherichia coli. The CuA-containing domain is purified in high yields as a water-soluble, thermostable, purple-colored protein. Copper analysis by chemical assay, mass spectrometry, X-ray fluorescence, and EPR spin quantification show that this protein contains two copper ions bound in a mixed-valence state, indicating that the CuA site in cytochrome ba3, is a binuclear center. The absorption spectrum of the CuA site, free of the heme interference in cytochrome ba3, is similar to the spectra of other soluble fragments from the aa3-type oxidase of Parachccus denitrificans [Lappalainen, P., et al. (1993) J. Biol Chem. 268, 26416-26421] and the caa3-type oxidase of Bacillus subtilis [von Wachenfeldt, C. et al. (1994) FEBS Lett. 340, 109-113]. There are intense bands at 480 nm (3100 M(-1) cm(-1)) and 530 nm (3200 M(-1) cm(-1)), a band in the near -IR centered at 790 nm (1900 M(-1) cn(-1)), and a weaker band at 363 nm (1300M(-1) cm(-1)). The visible CD spectrum shows a positive-going band at 460 nm and a negative-going band at 527 nm, the opposite signs of which may result from the binuclear nature of the site. The secondary structure prediction from the far-UV CD spectrum indicates that this domain is predominantly beta-sheet, in agreement with the recent X-ray structure reported for the complete P. denitrificans cytochrome aa3 molecule [Iwata, S., et al. (1995) Nature 376, 660-669] and the engineered, purple CyoA protein [Wilmanns, M., et al. (1996) Proc. Natl Acad. Sci. U.S.A. 92, 11955-11959]. However, the thermostability of the fragment described here (Tm approximately 80 degrees C) and the stable binding of copper over a broad pH range (pH 3-9) suggest this protein may be uniquely suitable for detailed physical-chemical study.
The effect of axial ligand mutation on the Cu(A) site in the recombinant water soluble fragment of subunit II of Thermus thermophilus cytochrome c oxidase ba(3) has been investigated. The weak methionine ligand was replaced by glutamate and glutamine which are stronger ligands. Two constructs, M160T0 and M160T9, that differ in the length of the peptide were prepared. M160T0 is the original soluble fragment construct of cytochrome ba(3) that encodes 135 amino acids of subunit II, omitting the transmembrane helix that anchors the domain in the membrane. In M160T9 nine C-terminal amino acids are missing, including one histidine. The latter has been used to reduce the amount of a secondary T2 copper which is most probably coordinated to a surface histidine in M160T0. The changes in the spin density in the Cu(A) site, as manifested by the hyperfine couplings of the weakly and strongly coupled nitrogens, and of the cysteine beta-protons, were followed using a combination of advanced EPR techniques. X-band ( approximately 9 GHz) electron-spin-echo envelope modulation (ESEEM) and two-dimensional (2D) hyperfine sublevel correlation (HYSCORE) spectroscopy were employed to measure the weakly coupled (14)N nuclei, and X- and W-band (95 GHz) pulsed electron-nuclear double resonance (ENDOR) spectroscopy for probing the strongly coupled (14)N nuclei and the beta-protons. The high field measurements were extremely useful as they allowed us to resolve the T2 and Cu(A) signals in the g( perpendicular) region and gave (1)H ENDOR spectra free of overlapping (14)N signals. The effects of the M160Q and M160E mutations were: (i) increase in A( parallel)((63,65)Cu), (ii) larger hyperfine coupling of the weakly coupled backbone nitrogen of C153, (iii) reduction in the isotropic hyperfine interaction, a(iso), of some of the beta-protons making them more similar, (iv) the a(iso) value of one of the remote nitrogens of the histidine residues is decreased, thus distinguishing the two histidines, and finally, (v) the symmetry of the g-tensor remained axial. These effects were associated with an increase in the Cu-Cu distance and subtle changes in the geometry of the Cu(2)S(2) core which are consistent with the electronic structural model of Gamelin et al. (Gamelin, D. R.; Randall, D. W.; Hay, M. T.; Houser, R. P.; Mulder, T. C.; Canters, G. W.; de Vries, S.; Tolman, W. B.; Lu, Y.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 5246-5263).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.