Arylazopyrazoles, a novel class of five-membered azo photoswitches, offer quantitative photoswitching and high thermal stability of the Z isomer (half-lives of 10 and ∼1000 days). The conformation of the Z isomers of these compounds, and also the arylazopyrroles, is highly dependent on the substitution pattern on the heteroarene, allowing a twisted or planar geometry, which in turn has a significant impact on the electronic spectral properties of the compounds.
Photoswitchable compounds, which can be reversibly switched between two isomers by light, continue to attract significant attention for a wide array of applications. Azoheteroarenes represent a relatively new but understudied type of photoswitch, where one of the aryl rings from the conventional azobenzene class has been replaced with a five-membered heteroaromatic ring. Initial studies have suggested the azoheteroarenes-the arylazopyrazoles in particular-to have excellent photoswitching properties (quantitative switching and long Z isomer half-life). Here we present a systematic computational and experimental study to elucidate the origin of the long thermal half-lives and excellent addressability of the arylazopyrazoles, and apply this understanding to determine important structure-property relationships for a wide array of comparable azoheteroaryl photoswitches. We identify compounds with Z isomer half-lives ranging from seconds to hours, to days and to years, and variable absorption characteristics, all through tuning of the heteraromatic ring. Conformation perhaps plays the largest role in determining such properties: the compounds with the longest isomerization half-lives adopt a T-shaped ground state Z isomer conformation and proceed through a T-shaped isomerization pathway, whereas the most complete photoswitching is achieved for compounds that have a twisted (rather than T-shaped) Z isomer conformation. By balancing these factors, we report a new azopyrazole 3pzH, which can be quantitatively switched to its Z isomer (>98%) with 355 nm irradiation, near-quantitatively (97%) switched back to the E isomer with 532 nm irradiation, and has a very long half-life for thermal isomerization (t = 74 d at 25 °C). Given the large tunability of their properties, the predictive nature of their performance, and the other functional opportunities afforded by usage of a heteroaromatic system, we believe the azoheteroaryl photoswitches to have huge potential in a wide range of optically addressable applications.
Photopharmacological agents exhibit light-dependent biological activity and may have potential in the development of new antimicrobial agents/modalities. Amidohydrolase enzymes homologous to the well-known human histone deacetylases (HDACs) are present in bacteria, including resistant organisms responsible for a significant number of hospital-acquired infections and deaths. We report photopharmacological inhibitors of these enzymes, using two classes of photoswitches embedded in the inhibitor pharmacophore: azobenzenes and arylazopyrazoles. Although both classes of inhibitor show excellent inhibitory activity (nM IC values) of the target enzymes and promising differential activity of the switchable E- and Z-isomeric forms, the arylazopyrazoles exhibit better intrinsic photoswitch performance (more complete switching, longer thermal lifetime of the Z-isomer). We also report protein-ligand crystal structures of the E-isomers of both an azobenzene and an arylazopyrazole inhibitor, bound to bacterial histone deacetylase-like amidohydrolases (HDAHs). These structures not only uncover interactions important for inhibitor binding but also reveal conformational differences between the two photoswitch inhibitor classes. As such, our data may pave the way for the design of improved photopharmacological agents targeting the HDAC superfamily.
Azoheteroarene photoswitches offer functional advantages over their more conventional azobenzene counterparts by virtue of their heteroaromatic ring(s). Here we report that azobis(2-imidazole) functions as a photoswitchable base due to the additional proton stabilisation that is possible in the protonated Z isomer, facilitated by the basic imidazole nitrogens. This thermodynamic difference in stability corresponds to a 1.3 unit difference in pK(a) values between the E and Z isomers. This pK(a) difference can be used to reversibly control solution pH.
An asymmetric photchemical synthesis of a dihyrohelicene demonstrates two wavelengths of circularly polarized (CP) light can be used to ensure the enantiomeric induction intrinsic to each step can combine additively; significantly increasing the asymmetric induction possible over a single wavelength approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.