Background: Environmental toxicants such as methylmercury, polychlorinated biphenyls, and organochlorine pesticides are potentially harmful pollutants present in contaminated food, soil, air, and water. Exposure to these ecologically relevant toxicants is prominent in Northern Canadian populations. Previous work focused on toxicant exposure during pregnancy as a threat to fetal neurodevelopment. However, little is known about the individual and combined effects of these toxicants on maternal health during pregnancy and post-partum. Methods: A scoping review was conducted to synthesize the current knowledge regarding individual and combined effects of methylmercury, polychlorinated biphenyls, and organochlorine pesticides on maternal behaviour and the maternal brain. Relevant studies were identified through the PubMed, Embase, and Toxline databases. Literature involving animal models and one human cohort were included in the review. Results: Research findings indicate that exposures to these environmental toxicants are associated with neurochemical changes in rodent models. Animal models provided the majority of information on toxicant-induced alterations in maternal care behaviours. Molecular and hormonal changes hypothesized to underlie these alterations were also addressed, although studies assessing toxicant co-exposure were limited. Conclusion: This review speaks to the limited knowledge regarding effects of these persistent organic pollutants on the maternal brain and related behavioural outcomes. Further research is required to better comprehend any such effects on maternal brain and behaviour, as maternal care is an important contributor to offspring neurodevelopment.
Natural killer (NK) cells are predominant innate lymphocytes that initiate the early immune response during infection. NK cells undergo a metabolic switch to fuel augmented proliferation and activation following infection. Tumor necrosis factor-alpha (TNFα) is a well-known inflammatory cytokine that enhances NK cell function; however, the mechanism underlying NK cell proliferation in response to TNFα is not well established. Here, we demonstrated that upon infection/inflammation, NK cells upregulate the expression of TNF receptor 2 (TNFR2), which is associated with increased proliferation, metabolic activity, and effector function. Notably, IL-18 can induce TNFR2 expression in NK cells, augmenting their sensitivity toward TNFα. Mechanistically, TNFα-TNFR2 signaling upregulates the expression of CD25 (IL-2Rα) and nutrient transporters in NK cells, leading to a metabolic switch toward aerobic glycolysis. Transcriptomic analysis revealed significantly reduced expression levels of genes involved in cellular metabolism and proliferation in NK cells from TNFR2 KO mice. Accordingly, our data affirmed that genetic ablation of TNFR2 curtails CD25 upregulation and TNFα-induced glycolysis, leading to impaired NK cell proliferation and antiviral function during MCMV infection in vivo. Collectively, our results delineate the crucial role of the TNFα-TNFR2 axis in NK cell proliferation, glycolysis, and effector function.
Targeting the PD-1/PD-L1 axis has transformed the field of immune-oncology. While conventional wisdom initially postulated that PD-L1 serves as the inert ligand for PD-1, an emerging body of literature suggests that PD-L1 has cell-intrinsic functions in immune and cancer cells. In line with these studies, here we show that engagement of PD-L1 via cellular ligands or agonistic antibodies, including those used in the clinic, potently inhibits the type I interferon pathway in cancer cells. Hampered type I interferon responses in PD-L1-expressing cancer cells resulted in enhanced infection with oncolytic viruses in vitro and in vivo. Consistently, PD-L1 expression marked tumor explants from cancer patients that were best infected by oncolytic viruses. Mechanistically, PD-L1 suppressed type I interferon by promoting a metabolic shift characterized by enhanced glucose uptake and glycolysis rate. Lactate generated from glycolysis was the key metabolite responsible for inhibiting type I interferon responses and enhancing oncolytic virus infection in PD-L1-expressing cells. In addition to adding mechanistic insight into PD-L1 intrinsic function and showing that PD-L1 has a broader impact on immunity and cancer biology besides acting as a ligand for PD-1, our results will also help guide the numerous efforts currently ongoing to combine PD-L1 antibodies with oncolytic virotherapy in clinical trials.Once sentence summaryPD-L1 promotes oncolytic virus efficacy.
Natural Killer (NK) cells are predominant innate lymphocytes that provide the early response during infection. NK cells undergo metabolic switch to fuel augmented proliferation and activation following infection. TNFα is a well-known inflammatory cytokine that enhances NK cell function, however, a mechanism for stimulation is not well established. Here, we demonstrated that upon infection/inflammation, NK cells upregulate the expression of TNF receptor 2 (TNFR2), which is associated with increased proliferation, metabolic activity and effector function. Notably, IL-18 can induce TNFR2 on NK cells, augmenting their sensitivity towards TNFα. Mechanistically, TNFα-TNFR2 signaling induces CD25 (IL-2Rα) expression on NK cells predominantly by autocrine mode, leading to a metabolic switch towards aerobic glycolysis. Accordingly, genetic ablation of TNFR2 curtails the CD25 upregulation and TNFα-induced glycolysis, leading to impaired NK cell proliferation during MCMV infection in vivo. Collectively, our results delineate the crucial role of the TNFα-TNFR2 axis in NK cells for proliferation, glycolysis, and effector function via CD25 induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.